Cargando…
Importance of sex and gender factors for COVID-19 infection and hospitalisation: a sex-stratified analysis using machine learning in UK Biobank data
OBJECTIVE: To examine sex and gender roles in COVID-19 test positivity and hospitalisation in sex-stratified predictive models using machine learning. DESIGN: Cross-sectional study. SETTING: UK Biobank prospective cohort. PARTICIPANTS: Participants tested between 16 March 2020 and 18 May 2020 were a...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9118360/ https://www.ncbi.nlm.nih.gov/pubmed/35584867 http://dx.doi.org/10.1136/bmjopen-2021-050450 |
Sumario: | OBJECTIVE: To examine sex and gender roles in COVID-19 test positivity and hospitalisation in sex-stratified predictive models using machine learning. DESIGN: Cross-sectional study. SETTING: UK Biobank prospective cohort. PARTICIPANTS: Participants tested between 16 March 2020 and 18 May 2020 were analysed. MAIN OUTCOME MEASURES: The endpoints of the study were COVID-19 test positivity and hospitalisation. Forty-two individuals’ demographics, psychosocial factors and comorbidities were used as likely determinants of outcomes. Gradient boosting machine was used for building prediction models. RESULTS: Of 4510 individuals tested (51.2% female, mean age=68.5±8.9 years), 29.4% tested positive. Males were more likely to be positive than females (31.6% vs 27.3%, p=0.001). In females, living in more deprived areas, lower income, increased low-density lipoprotein (LDL) to high-density lipoprotein (HDL) ratio, working night shifts and living with a greater number of family members were associated with a higher likelihood of COVID-19 positive test. While in males, greater body mass index and LDL to HDL ratio were the factors associated with a positive test. Older age and adverse cardiometabolic characteristics were the most prominent variables associated with hospitalisation of test-positive patients in both overall and sex-stratified models. CONCLUSION: High-risk jobs, crowded living arrangements and living in deprived areas were associated with increased COVID-19 infection in females, while high-risk cardiometabolic characteristics were more influential in males. Gender-related factors have a greater impact on females; hence, they should be considered in identifying priority groups for COVID-19 infection vaccination campaigns. |
---|