Cargando…
Spectroscopic, Electrochemical, and Biological Assays of Copper-Binding Molecules for Screening of Different Drugs and Plant Extracts against Neurodegenerative Disorders
[Image: see text] Neurodegenerative disorders, caused by prone-to-aggregation proteins, such as Alzheimer disease or Huntington disease, share other traits such as disrupted homeostasis of essential metal ions, like copper. In this context, in an attempt to identify Cu(2+) chelating agents, we study...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9118385/ https://www.ncbi.nlm.nih.gov/pubmed/35601340 http://dx.doi.org/10.1021/acsomega.1c03378 |
Sumario: | [Image: see text] Neurodegenerative disorders, caused by prone-to-aggregation proteins, such as Alzheimer disease or Huntington disease, share other traits such as disrupted homeostasis of essential metal ions, like copper. In this context, in an attempt to identify Cu(2+) chelating agents, we study several organic compounds (ethylenediaminetetraacetic acid, phenylenediamine, metformin, salicylate, and trehalose) and organic extracts obtained from Bacopa monnieri L., which has been used in Ayurvedic therapies and presented a broad spectrum of biological properties. For this purpose, UV–visible spectroscopy analysis and electrochemical measurements were performed. Further, biological assays were performed in Caenorhabditis elegans models of polyQ toxicity, in an attempt to obtain better insights on neurodegenerative disorders. |
---|