Cargando…
Preparation of Highly Stable DUT-52 Materials and Adsorption of Dichromate Ions in Aqueous Solution
[Image: see text] Highly stable DUT-52 materials were synthesized by the hydrothermal method and well-characterized by X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy (XPS). In order to systematically study the adsorption of dichromat...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9118407/ https://www.ncbi.nlm.nih.gov/pubmed/35601289 http://dx.doi.org/10.1021/acsomega.2c00373 |
Sumario: | [Image: see text] Highly stable DUT-52 materials were synthesized by the hydrothermal method and well-characterized by X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy (XPS). In order to systematically study the adsorption of dichromate ions in aqueous solution by the DUT-52 materials, a single factor experiment, kinetic experiment, thermodynamic experiment, competition ion experiment, and material regeneration experiment were designed. Based on the H-bond interaction between the dichromate ions and the H atoms of a NDC(2–) ligand, the DUT-52 materials showed a maximum removal rate of 96.4% and a maximum adsorption capacity of 120.68 mg·g(–1) with excellent selective adsorption and material regeneration. In addition, the process of adsorption of dichromate ions by the DUT-52 materials is in accordance with the pseudo second-order kinetics and Langmuir models, and the adsorption mechanism and the important role of the H-bond interaction were reasonably explained using the XPS pattern and theoretical calculation. Accordingly, DUT-52 can be regarded as a multifunctional material for efficiently removing dichromate ions from the wastewater. |
---|