Cargando…

Mutation spectrum data for Saccharomyces cerevisiae psf1-1 pol2-M644G mutants

DNA replication in Saccharomyces cerevisiae and other eukaryotes is performed mainly by polymerase epsilon (Pol ε) on the leading strand and polymerase delta (Pol δ) on the lagging strand. Using a mutant form of a DNA polymerase enables tracking its signature in the replicated DNA. Here, we used the...

Descripción completa

Detalles Bibliográficos
Autores principales: Dmowski, Michal, Makiela-Dzbenska, Karolina, Jedrychowska, Malgorzata, Denkiewicz-Kruk, Milena, Fijalkowska, Iwona J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9118526/
https://www.ncbi.nlm.nih.gov/pubmed/35599818
http://dx.doi.org/10.1016/j.dib.2022.108223
Descripción
Sumario:DNA replication in Saccharomyces cerevisiae and other eukaryotes is performed mainly by polymerase epsilon (Pol ε) on the leading strand and polymerase delta (Pol δ) on the lagging strand. Using a mutant form of a DNA polymerase enables tracking its signature in the replicated DNA. Here, we used the pol2-M644G allele encoding the catalytic subunit of Pol ε to analyse its contribution to DNA replication in yeast with the psf1-1 allele of an essential gene encoding a subunit of the GINS complex. GINS is involved in the recruitment of Pol ε, the major leading strand replicase. Thus, its defective functioning can affect the involvement of Pol ε in DNA replication. Together with Cdc45 and Mcm2-7, GINS forms the CMG helicase complex. Our DNA sequencing data enable the observation of changes in the mutational spectra in the URA3 reporter gene cloned in two orientations regarding the nearest ARS. The data presented in this article support the study "Increased contribution of DNA polymerase delta to the leading strand replication in yeast with an impaired CMG helicase complex” [1].