Cargando…

Ligand-Induced U Mobilization from Chemogenic Uraninite and Biogenic Noncrystalline U(IV) under Anoxic Conditions

[Image: see text] Microbial reduction of soluble hexavalent uranium (U(VI)) to sparingly soluble tetravalent uranium (U(IV)) has been explored as an in situ strategy to immobilize U. Organic ligands might pose a potential hindrance to the success of such remediation efforts. In the current study, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Chardi, Kyle J., Satpathy, Anshuman, Schenkeveld, Walter D. C., Kumar, Naresh, Noël, Vincent, Kraemer, Stephan M., Giammar, Daniel E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9118557/
https://www.ncbi.nlm.nih.gov/pubmed/35522992
http://dx.doi.org/10.1021/acs.est.1c07919
Descripción
Sumario:[Image: see text] Microbial reduction of soluble hexavalent uranium (U(VI)) to sparingly soluble tetravalent uranium (U(IV)) has been explored as an in situ strategy to immobilize U. Organic ligands might pose a potential hindrance to the success of such remediation efforts. In the current study, a set of structurally diverse organic ligands were shown to enhance the dissolution of crystalline uraninite (UO(2)) for a wide range of ligand concentrations under anoxic conditions at pH 7.0. Comparisons were made to ligand-induced U mobilization from noncrystalline U(IV). For both U phases, aqueous U concentrations remained low in the absence of organic ligands (<25 nM for UO(2); 300 nM for noncrystalline U(IV)). The tested organic ligands (2,6-pyridinedicarboxylic acid (DPA), desferrioxamine B (DFOB), N,N′-di(2-hydroxybenzyl)ethylene-diamine-N,N′-diacetic acid (HBED), and citrate) enhanced U mobilization to varying extents. Over 45 days, the ligands mobilized only up to 0.3% of the 370 μM UO(2), while a much larger extent of the 300 μM of biomass-bound noncrystalline U(IV) was mobilized (up to 57%) within only 2 days (>500 times more U mobilization). This work shows the potential of numerous organic ligands present in the environment to mobilize both recalcitrant and labile U forms under anoxic conditions to hazardous levels and, in doing so, undermine the stability of immobilized U(IV) sources.