Cargando…

Overexpression of AHL9 accelerates leaf senescence in Arabidopsis thaliana

BACKGROUND: Leaf senescence, the final stage of leaf growth and development, is regulated by numerous internal factors and environmental cues. Ethylene is one of the key senescence related hormones, but the underlying molecular mechanism of ethylene-induced leaf senescence remains poorly understood....

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Yusen, Zhang, Xiaomin, Chen, Jing, Guo, Xiaopeng, Wang, Hongyan, Zhen, Weibo, Zhang, Junli, Hu, Zhubing, Zhang, Xuebing, Botella, José Ramón, Ito, Toshiro, Guo, Siyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9118680/
https://www.ncbi.nlm.nih.gov/pubmed/35590269
http://dx.doi.org/10.1186/s12870-022-03622-9
Descripción
Sumario:BACKGROUND: Leaf senescence, the final stage of leaf growth and development, is regulated by numerous internal factors and environmental cues. Ethylene is one of the key senescence related hormones, but the underlying molecular mechanism of ethylene-induced leaf senescence remains poorly understood. RESULTS: In this study, we identified one AT-hook like (AHL) protein, AHL9, as a positive regulator of leaf senescence in Arabidopsis thaliana. Overexpression of AHL9 significantly accelerates age-related leaf senescence and promotes dark-induced leaf chlorosis. The early senescence phenotype observed in AHL9 overexpressing lines is inhibited by the ethylene biosynthesis inhibitor aminooxyacetic acid suggesting the involvement of ethylene in the AHL9-associated senescence. RNA-seq and quantitative reverse transcription PCR (qRT-PCR) data identified numerous senescence-associated genes differentially expressed in leaves of AHL9 overexpressing transgenic plants. CONCLUSIONS: Our investigation demonstrates that AHL9 functions in accelerating the leaf senescence process via ethylene synthesis or signalling. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12870-022-03622-9.