Cargando…
MAGCNSE: predicting lncRNA-disease associations using multi-view attention graph convolutional network and stacking ensemble model
BACKGROUND: Many long non-coding RNAs (lncRNAs) have key roles in different human biologic processes and are closely linked to numerous human diseases, according to cumulative evidence. Predicting potential lncRNA-disease associations can help to detect disease biomarkers and perform disease analysi...
Autores principales: | Liang, Ying, Zhang, Ze-Qun, Liu, Nian-Nian, Wu, Ya-Nan, Gu, Chang-Long, Wang, Ying-Long |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9118755/ https://www.ncbi.nlm.nih.gov/pubmed/35590258 http://dx.doi.org/10.1186/s12859-022-04715-w |
Ejemplares similares
-
Prediction of lncRNA–Disease Associations via Closest Node Weight Graphs of the Spatial Neighborhood Based on the Edge Attention Graph Convolutional Network
por: Li, Jianwei, et al.
Publicado: (2022) -
Graph Convolutional Network and Convolutional Neural Network Based Method for Predicting lncRNA-Disease Associations
por: Xuan, Ping, et al.
Publicado: (2019) -
Predicting lncRNA-miRNA Interaction via Graph Convolution Auto-Encoder
por: Huang, Yu-An, et al.
Publicado: (2019) -
gGATLDA: lncRNA-disease association prediction based on graph-level graph attention network
por: Wang, Li, et al.
Publicado: (2022) -
Predicting lncRNA-disease associations based on heterogeneous graph convolutional generative adversarial network
por: Lu, Zhonghao, et al.
Publicado: (2023)