Cargando…
Prediction of acute kidney injury risk after cardiac surgery: using a hybrid machine learning algorithm
BACKGROUND: Acute kidney injury (AKI) is a serious complication after cardiac surgery. We derived and internally validated a Machine Learning preoperative model to predict cardiac surgery-associated AKI of any severity and compared its performance with parametric statistical models. METHODS: We cond...
Autores principales: | Petrosyan, Yelena, Mesana, Thierry G., Sun, Louise Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9118758/ https://www.ncbi.nlm.nih.gov/pubmed/35585624 http://dx.doi.org/10.1186/s12911-022-01859-w |
Ejemplares similares
-
Predicting Acute Kidney Injury after Cardiac Surgery by Machine Learning Approaches
por: Thongprayoon, Charat, et al.
Publicado: (2020) -
Prediction of the development of acute kidney injury following cardiac surgery by machine learning
por: Tseng, Po-Yu, et al.
Publicado: (2020) -
Machine learning for the prediction of acute kidney injury in patients after cardiac surgery
por: Xue, Xin, et al.
Publicado: (2022) -
Prediction of Acute Kidney Injury After Cardiac Surgery Using Interpretable Machine Learning
por: Ejmalian, Azar, et al.
Publicado: (2022) -
Disability-free survival after major cardiac surgery: a population-based retrospective cohort study
por: Sun, Louise Y., et al.
Publicado: (2021)