Cargando…
Prediction of glioma-subtypes: comparison of performance on a DL classifier using bounding box areas versus annotated tumors
BACKGROUND: For brain tumors, identifying the molecular subtypes from magnetic resonance imaging (MRI) is desirable, but remains a challenging task. Recent machine learning and deep learning (DL) approaches may help the classification/prediction of tumor subtypes through MRIs. However, most of these...
Autores principales: | Ali, Muhaddisa Barat, Gu, Irene Yu-Hua, Lidemar, Alice, Berger, Mitchel S., Widhalm, Georg, Jakola, Asgeir Store |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9118766/ https://www.ncbi.nlm.nih.gov/pubmed/35590389 http://dx.doi.org/10.1186/s42490-022-00061-3 |
Ejemplares similares
-
A novel federated deep learning scheme for glioma and its subtype classification
por: Ali, Muhaddisa Barat, et al.
Publicado: (2023) -
Domain Mapping and Deep Learning from Multiple MRI Clinical Datasets for Prediction of Molecular Subtypes in Low Grade Gliomas
por: Ali, Muhaddisa Barat, et al.
Publicado: (2020) -
A Feasibility Study on Deep Learning Based Brain Tumor Segmentation Using 2D Ellipse Box Areas
por: Ali, Muhaddisa Barat, et al.
Publicado: (2022) -
Seizures in patients with IDH-mutated lower grade gliomas
por: Carstam, Louise, et al.
Publicado: (2022) -
Moving from clinician-defined to patient-reported outcome measures for survivors of high-grade glioma
por: Rosenlund, Lena, et al.
Publicado: (2019)