Cargando…
Wheat leaf area index prediction using data fusion based on high-resolution unmanned aerial vehicle imagery
BACKGROUND: Leaf Area Index (LAI) is half of the amount of leaf area per unit horizontal ground surface area. Consequently, accurate vegetation extraction in remote sensing imagery is critical for LAI estimation. However, most studies do not fully exploit the advantages of Unmanned Aerial Vehicle (U...
Autores principales: | Wu, Shuang, Deng, Lei, Guo, Lijie, Wu, Yanjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9118866/ https://www.ncbi.nlm.nih.gov/pubmed/35590377 http://dx.doi.org/10.1186/s13007-022-00899-7 |
Ejemplares similares
-
Estimation of Peanut Leaf Area Index from Unmanned Aerial Vehicle Multispectral Images
por: Qi, Haixia, et al.
Publicado: (2020) -
Pedestrian Detection and Tracking from Low-Resolution Unmanned Aerial Vehicle Thermal Imagery
por: Ma, Yalong, et al.
Publicado: (2016) -
Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots
por: Lelong, Camille C. D., et al.
Publicado: (2008) -
Evaluation of Aboveground Nitrogen Content of Winter Wheat Using Digital Imagery of Unmanned Aerial Vehicles
por: Yang, Baohua, et al.
Publicado: (2019) -
A High-Throughput Model-Assisted Method for Phenotyping Maize Green Leaf Area Index Dynamics Using Unmanned Aerial Vehicle Imagery
por: Blancon, Justin, et al.
Publicado: (2019)