Cargando…
Is single-step genomic REML with the algorithm for proven and young more computationally efficient when less generations of data are present?
Efficient computing techniques allow the estimation of variance components for virtually any traditional dataset. When genomic information is available, variance components can be estimated using genomic REML (GREML). If only a portion of the animals have genotypes, single-step GREML (ssGREML) is th...
Autores principales: | Junqueira, Vinícius Silva, Lourenco, Daniela, Masuda, Yutaka, Cardoso, Fernando Flores, Lopes, Paulo Sávio, Silva, Fabyano Fonseca e, Misztal, Ignacy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9118993/ https://www.ncbi.nlm.nih.gov/pubmed/35289906 http://dx.doi.org/10.1093/jas/skac082 |
Ejemplares similares
-
Efficient approximation of reliabilities for single-step genomic best linear unbiased predictor models with the Algorithm for Proven and Young
por: Bermann, Matias, et al.
Publicado: (2021) -
Indirect predictions with a large number of genotyped animals using the algorithm for proven and young
por: Garcia, Andre L S, et al.
Publicado: (2020) -
Core-dependent changes in genomic predictions using the Algorithm for Proven and Young in single-step genomic best linear unbiased prediction
por: Misztal, Ignacy, et al.
Publicado: (2020) -
Crossbred evaluations using single-step genomic BLUP and algorithm for proven and young with different sources of data
por: Pocrnic, Ivan, et al.
Publicado: (2019) -
Changes in genomic predictions when new information is added
por: Hidalgo, Jorge, et al.
Publicado: (2021)