Cargando…

Metabolic engineering of microorganisms for L-alanine production

L-alanine is extensively used in chemical, food, and medicine industries. Industrial production of L-alanine has been mainly based on the enzymatic process using petroleum-based L-aspartic acid as the substrate. L-alanine production from renewable biomass using microbial fermentation process is an a...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Pingping, Xu, Hongtao, Zhang, Xueli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9119001/
https://www.ncbi.nlm.nih.gov/pubmed/34410417
http://dx.doi.org/10.1093/jimb/kuab057
Descripción
Sumario:L-alanine is extensively used in chemical, food, and medicine industries. Industrial production of L-alanine has been mainly based on the enzymatic process using petroleum-based L-aspartic acid as the substrate. L-alanine production from renewable biomass using microbial fermentation process is an alternative route. Many microorganisms can naturally produce L-alanine using aminotransferase or L-alanine dehydrogenase. However, production of L-alanine using the native strains has been limited due to their low yields and productivities. In this review, metabolic engineering of microorganisms for L-alanine production was summarized. Among them, the Escherichia coli strains developed by Dr. Lonnie Ingram's group which can produce L-alanine with anaerobic fermentation process had several advantages, especially having high L-alanine yield, and it was the first one that realized commercialization. L-alanine is also the first amino acid that could be industrially produced by anaerobic fermentation.