Cargando…
LLRHNet: Multiple Lesions Segmentation Using Local-Long Range Features
The encoder-decoder-based deep convolutional neural networks (CNNs) have made great improvements in medical image segmentation tasks. However, due to the inherent locality of convolution, CNNs generally are demonstrated to have limitations in obtaining features across layers and long-range features...
Autores principales: | Liu, Liangliang, Wang, Ying, Chang, Jing, Zhang, Pei, Liang, Gongbo, Zhang, Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9119082/ https://www.ncbi.nlm.nih.gov/pubmed/35600503 http://dx.doi.org/10.3389/fninf.2022.859973 |
Ejemplares similares
-
Decomposition-Based Correlation Learning for Multi-Modal MRI-Based Classification of Neuropsychiatric Disorders
por: Liu, Liangliang, et al.
Publicado: (2022) -
New lesion segmentation for multiple sclerosis brain images with imaging and lesion-aware augmentation
por: Basaran, Berke Doga, et al.
Publicado: (2022) -
Co-optimization Learning Network for MRI Segmentation of Ischemic Penumbra Tissues
por: Liu, Liangliang, et al.
Publicado: (2021) -
Multiple sclerosis lesion segmentation: revisiting weighting mechanisms for federated learning
por: Liu, Dongnan, et al.
Publicado: (2023) -
Editorial: Automatic methods for multiple sclerosis new lesions detection and segmentation
por: Commowick, Olivier, et al.
Publicado: (2023)