Cargando…
Hydrogels for Tissue Engineering: Addressing Key Design Needs Toward Clinical Translation
While the soft mechanics and tunable cell interactions facilitated by hydrogels have attracted significant interest in the development of functional hydrogel-based tissue engineering scaffolds, translating the many positive results observed in the lab into the clinic remains a slow process. In this...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9119391/ https://www.ncbi.nlm.nih.gov/pubmed/35600900 http://dx.doi.org/10.3389/fbioe.2022.849831 |
Sumario: | While the soft mechanics and tunable cell interactions facilitated by hydrogels have attracted significant interest in the development of functional hydrogel-based tissue engineering scaffolds, translating the many positive results observed in the lab into the clinic remains a slow process. In this review, we address the key design criteria in terms of the materials, crosslinkers, and fabrication techniques useful for fabricating translationally-relevant tissue engineering hydrogels, with particular attention to three emerging fabrication techniques that enable simultaneous scaffold fabrication and cell loading: 3D printing, in situ tissue engineering, and cell electrospinning. In particular, we emphasize strategies for manufacturing tissue engineering hydrogels in which both macroporous scaffold fabrication and cell loading can be conducted in a single manufacturing step – electrospinning, 3D printing, and in situ tissue engineering. We suggest that combining such integrated fabrication approaches with the lessons learned from previously successful translational experiences with other hydrogels represents a promising strategy to accelerate the implementation of hydrogels for tissue engineering in the clinic. |
---|