Cargando…
Distinguishing Admissions Specifically for COVID-19 From Incidental SARS-CoV-2 Admissions: National Retrospective Electronic Health Record Study
BACKGROUND: Admissions are generally classified as COVID-19 hospitalizations if the patient has a positive SARS-CoV-2 polymerase chain reaction (PCR) test. However, because 35% of SARS-CoV-2 infections are asymptomatic, patients admitted for unrelated indications with an incidentally positive test c...
Autores principales: | Klann, Jeffrey G, Strasser, Zachary H, Hutch, Meghan R, Kennedy, Chris J, Marwaha, Jayson S, Morris, Michele, Samayamuthu, Malarkodi Jebathilagam, Pfaff, Ashley C, Estiri, Hossein, South, Andrew M, Weber, Griffin M, Yuan, William, Avillach, Paul, Wagholikar, Kavishwar B, Luo, Yuan, Omenn, Gilbert S, Visweswaran, Shyam, Holmes, John H, Xia, Zongqi, Brat, Gabriel A, Murphy, Shawn N |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9119395/ https://www.ncbi.nlm.nih.gov/pubmed/35476727 http://dx.doi.org/10.2196/37931 |
Ejemplares similares
-
A retrospective cohort analysis leveraging augmented intelligence to characterize long COVID in the electronic health record: A precision medicine framework
por: Strasser, Zachary H., et al.
Publicado: (2023) -
Characterization of long COVID temporal sub-phenotypes by distributed representation learning from electronic health record data: a cohort study
por: Dagliati, Arianna, et al.
Publicado: (2023) -
Predicting COVID-19 mortality with electronic medical records
por: Estiri, Hossein, et al.
Publicado: (2021) -
Validation of an Internationally Derived Patient Severity Phenotype to Support COVID-19 Analytics from Electronic Health Record Data
por: Klann, Jeffrey G, et al.
Publicado: (2021) -
An objective framework for evaluating unrecognized bias in medical AI models predicting COVID-19 outcomes
por: Estiri, Hossein, et al.
Publicado: (2022)