Cargando…
A causal learning framework for the analysis and interpretation of COVID-19 clinical data
We present a workflow for clinical data analysis that relies on Bayesian Structure Learning (BSL), an unsupervised learning approach, robust to noise and biases, that allows to incorporate prior medical knowledge into the learning process and that provides explainable results in the form of a graph...
Autores principales: | Ferrari, Elisa, Gargani, Luna, Barbieri, Greta, Ghiadoni, Lorenzo, Faita, Francesco, Bacciu, Davide |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9119448/ https://www.ncbi.nlm.nih.gov/pubmed/35588440 http://dx.doi.org/10.1371/journal.pone.0268327 |
Ejemplares similares
-
Early outcome detection for COVID-19 patients
por: Sîrbu, Alina, et al.
Publicado: (2021) -
Long-term lung ultrasound follow-up in patients after COVID-19 pneumonia hospitalization: A prospective comparative study with chest computed tomography
por: Barbieri, Greta, et al.
Publicado: (2023) -
Intima media thickness, pulse wave velocity, and flow mediated dilation
por: Bruno, Rosa Maria, et al.
Publicado: (2014) -
Prognostic Role of Sonographic Decongestion in Patients with Acute Heart Failure with Reduced and Preserved Ejection Fraction: A Multicentre Study
por: Pugliese, Nicola R., et al.
Publicado: (2023) -
Arterial lactate as a risk factor for death in respiratory failure related to coronavirus disease 2019: an observational study
por: Maraziti, Giorgio, et al.
Publicado: (2023)