Cargando…
CancerOmicsNet: a multi-omics network-based approach to anti-cancer drug profiling
Development of novel anti-cancer treatments requires not only a comprehensive knowledge of cancer processes and drug mechanisms of action, but also the ability to accurately predict the response of various cancer cell lines to therapeutics. Numerous computational methods have been developed to addre...
Autores principales: | Pu, Limeng, Singha, Manali, Ramanujam, Jagannathan, Brylinski, Michal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9119687/ https://www.ncbi.nlm.nih.gov/pubmed/35601606 http://dx.doi.org/10.18632/oncotarget.28234 |
Ejemplares similares
-
Unlocking the Potential of Kinase Targets in Cancer: Insights from CancerOmicsNet, an AI-Driven Approach to Drug Response Prediction in Cancer
por: Singha, Manali, et al.
Publicado: (2023) -
GraphSite: Ligand Binding Site Classification with Deep Graph Learning
por: Shi, Wentao, et al.
Publicado: (2022) -
Pocket2Drug: An Encoder-Decoder Deep Neural Network for the Target-Based Drug Design
por: Shi, Wentao, et al.
Publicado: (2022) -
An integrated network representation of multiple cancer-specific data for graph-based machine learning
por: Pu, Limeng, et al.
Publicado: (2022) -
GraphDTI: A robust deep learning predictor of drug-target interactions from multiple heterogeneous data
por: Liu, Guannan, et al.
Publicado: (2021)