Cargando…
Construction and Evaluation of Prognosis Prediction Model for Patients with Brain Contusion and Laceration Based on Machine Learning
OBJECTIVE: Finding valuable risk factors for the prognosis of brain contusion and laceration can help patients understand the condition and improve the prognosis. This study is aimed at analyzing the risk factors of poor prognosis in patients with brain contusion after the operation. METHODS: A tota...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9119748/ https://www.ncbi.nlm.nih.gov/pubmed/35602351 http://dx.doi.org/10.1155/2022/4311434 |
Sumario: | OBJECTIVE: Finding valuable risk factors for the prognosis of brain contusion and laceration can help patients understand the condition and improve the prognosis. This study is aimed at analyzing the risk factors of poor prognosis in patients with brain contusion after the operation. METHODS: A total of 136 patients with cerebral contusion and laceration combined with cerebral hernia treated by neurosurgical craniotomy in our hospital were retrospectively selected and divided into a training set (n = 95) and a test set (n = 41) by the 10-fold crossover method. Logistic regression and back-propagation neural network prediction models were established to predict poor prognosis factors. The receiver operating characteristic curve (ROC) and the calibration curve were used to verify the differentiation and consistency of the prediction model. RESULTS: Based on logistic regression and back-propagation neural network prediction models, GCS score ≤ 8 on admission, blood loss ≥ 30 ml, mannitol ≥ 2 weeks, anticoagulants before admission, and surgical treatment are the risk factors that affect the poor prognosis of patients with a cerebral contusion after the operation. The area under the ROC was 0.816 (95% CI 0.705~0.926) and 0.819 (95% CI 0.708~0.931), respectively. CONCLUSION: The prediction model based on the risk factors that affect the poor prognosis of patients with brain contusion and laceration has good discrimination and accuracy. |
---|