Cargando…
Exploration of Black Boxes of Supervised Machine Learning Models: A Demonstration on Development of Predictive Heart Risk Score
Machine learning (ML) often provides applicable high-performance models to facilitate decision-makers in various fields. However, this high performance is achieved at the expense of the interpretability of these models, which has been criticized by practitioners and has become a significant hindranc...
Autores principales: | Sajid, Mirza Rizwan, Khan, Arshad Ali, Albar, Haitham M., Muhammad, Noryanti, Sami, Waqas, Bukhari, Syed Ahmad Chan, Wajahat, Iram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9119773/ https://www.ncbi.nlm.nih.gov/pubmed/35602638 http://dx.doi.org/10.1155/2022/5475313 |
Ejemplares similares
-
Modifiable risk factors and overall cardiovascular mortality: Moderation of urbanization
por: Sajid, Mirza Rizwan, et al.
Publicado: (2020) -
Development of Nonlaboratory-Based Risk Prediction Models for Cardiovascular Diseases Using Conventional and Machine Learning Approaches
por: Sajid, Mirza Rizwan, et al.
Publicado: (2021) -
Machine learning for psychiatry: getting doctors at the black box?
por: Hedderich, Dennis M., et al.
Publicado: (2020) -
Unpacking the black box
por: Martins, Thiago Gonçalves dos Santos, et al.
Publicado: (2020) -
The BOXES Methodology: Black Box Dynamic Control
por: Russell, David W
Publicado: (2012)