Cargando…
Appraisal of high-stake examinations during SARS-CoV-2 emergency with responsible and transparent AI: Evidence of fair and detrimental assessment
In situations like the coronavirus pandemic, colleges and universities are forced to limit their offline and regular academic activities. Extended postponement of high-stakes exams due to health risk hereby reduces productivity and progress in later years. Several countries decided to organize the e...
Autores principales: | Rayhan, MD., Alam, MD. Golam Rabiul, Dewan, M. Ali Akber, Ahmed, M. Helal Uddin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9119867/ http://dx.doi.org/10.1016/j.caeai.2022.100077 |
Ejemplares similares
-
CNN-XGBoost fusion-based affective state recognition using EEG spectrogram image analysis
por: Khan, Md. Sakib, et al.
Publicado: (2022) -
Strategies for Deploying Unreliable AI Graders in High-Transparency High-Stakes Exams
por: Azad, Sushmita, et al.
Publicado: (2020) -
Shapley-Additive-Explanations-Based Factor Analysis for Dengue Severity Prediction using Machine Learning
por: Chowdhury, Shihab Uddin, et al.
Publicado: (2022) -
Interpretable Differential Diagnosis of Non-COVID Viral Pneumonia, Lung Opacity and COVID-19 Using Tuned Transfer Learning and Explainable AI
por: Islam, Md. Nazmul, et al.
Publicado: (2023) -
AI Fairness
por: Mahoney, Trisha
Publicado: (2020)