Cargando…
Predicting target–ligand interactions with graph convolutional networks for interpretable pharmaceutical discovery
Drug Discovery is an active research area that demands great investments and generates low returns due to its inherent complexity and great costs. To identify potential therapeutic candidates more effectively, we propose protein–ligand with adversarial augmentations network (PLA-Net), a deep learnin...
Autores principales: | Ruiz Puentes, Paola, Rueda-Gensini, Laura, Valderrama, Natalia, Hernández, Isabela, González, Cristina, Daza, Laura, Muñoz-Camargo, Carolina, Cruz, Juan C., Arbeláez, Pablo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9119967/ https://www.ncbi.nlm.nih.gov/pubmed/35589824 http://dx.doi.org/10.1038/s41598-022-12180-x |
Ejemplares similares
-
PharmaNet: Pharmaceutical discovery with deep recurrent neural networks
por: Ruiz Puentes, Paola, et al.
Publicado: (2021) -
Rational Discovery of Antimicrobial Peptides by Means of Artificial Intelligence
por: Ruiz Puentes, Paola, et al.
Publicado: (2022) -
Tailoring Iron Oxide Nanoparticles for Efficient Cellular Internalization and Endosomal Escape
por: Rueda-Gensini, Laura, et al.
Publicado: (2020) -
Graphene Oxide-Embedded Extracellular Matrix-Derived Hydrogel as a Multiresponsive Platform for 3D Bioprinting Applications
por: Rueda-Gensini, Laura, et al.
Publicado: (2021) -
Prediction and Interpretation of Polymer Properties
Using the Graph Convolutional Network
por: Park, Jaehong, et al.
Publicado: (2022)