Cargando…
Forecasting large-scale circulation regimes using deformable convolutional neural networks and global spatiotemporal climate data
Classifying the state of the atmosphere into a finite number of large-scale circulation regimes is a popular way of investigating teleconnections, the predictability of severe weather events, and climate change. Here, we investigate a supervised machine learning approach based on deformable convolut...
Autores principales: | Nielsen, Andreas Holm, Iosifidis, Alexandros, Karstoft, Henrik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120012/ https://www.ncbi.nlm.nih.gov/pubmed/35589754 http://dx.doi.org/10.1038/s41598-022-12167-8 |
Ejemplares similares
-
2D Convolutional Neural Markov Models for Spatiotemporal Sequence Forecasting
por: Halim, Calvin Janitra, et al.
Publicado: (2020) -
Spatiotemporal Transformer Neural Network for Time-Series Forecasting
por: You, Yujie, et al.
Publicado: (2022) -
Embedded Temporal Convolutional Networks for Essential Climate Variables Forecasting
por: Villia, Maria Myrto, et al.
Publicado: (2022) -
Spatiotemporal neural network with attention mechanism for El Niño forecasts
por: Kim, Jinah, et al.
Publicado: (2022) -
The predictive skill of convolutional neural networks models for disease forecasting
por: Lee, Kookjin, et al.
Publicado: (2021)