Cargando…
Estimating the COVID-19 infection fatality ratio accounting for seroreversion using statistical modelling
BACKGROUND: The infection fatality ratio (IFR) is a key statistic for estimating the burden of coronavirus disease 2019 (COVID-19) and has been continuously debated throughout the COVID-19 pandemic. The age-specific IFR can be quantified using antibody surveys to estimate total infections, but requi...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120146/ https://www.ncbi.nlm.nih.gov/pubmed/35603270 http://dx.doi.org/10.1038/s43856-022-00106-7 |
_version_ | 1784710870535766016 |
---|---|
author | Brazeau, Nicholas F. Verity, Robert Jenks, Sara Fu, Han Whittaker, Charles Winskill, Peter Dorigatti, Ilaria Walker, Patrick G. T. Riley, Steven Schnekenberg, Ricardo P. Hoeltgebaum, Henrique Mellan, Thomas A. Mishra, Swapnil Unwin, H. Juliette T. Watson, Oliver J. Cucunubá, Zulma M. Baguelin, Marc Whittles, Lilith Bhatt, Samir Ghani, Azra C. Ferguson, Neil M. Okell, Lucy C. |
author_facet | Brazeau, Nicholas F. Verity, Robert Jenks, Sara Fu, Han Whittaker, Charles Winskill, Peter Dorigatti, Ilaria Walker, Patrick G. T. Riley, Steven Schnekenberg, Ricardo P. Hoeltgebaum, Henrique Mellan, Thomas A. Mishra, Swapnil Unwin, H. Juliette T. Watson, Oliver J. Cucunubá, Zulma M. Baguelin, Marc Whittles, Lilith Bhatt, Samir Ghani, Azra C. Ferguson, Neil M. Okell, Lucy C. |
author_sort | Brazeau, Nicholas F. |
collection | PubMed |
description | BACKGROUND: The infection fatality ratio (IFR) is a key statistic for estimating the burden of coronavirus disease 2019 (COVID-19) and has been continuously debated throughout the COVID-19 pandemic. The age-specific IFR can be quantified using antibody surveys to estimate total infections, but requires consideration of delay-distributions from time from infection to seroconversion, time to death, and time to seroreversion (i.e. antibody waning) alongside serologic test sensitivity and specificity. Previous IFR estimates have not fully propagated uncertainty or accounted for these potential biases, particularly seroreversion. METHODS: We built a Bayesian statistical model that incorporates these factors and applied this model to simulated data and 10 serologic studies from different countries. RESULTS: We demonstrate that seroreversion becomes a crucial factor as time accrues but is less important during first-wave, short-term dynamics. We additionally show that disaggregating surveys by regions with higher versus lower disease burden can inform serologic test specificity estimates. The overall IFR in each setting was estimated at 0.49–2.53%. CONCLUSION: We developed a robust statistical framework to account for full uncertainties in the parameters determining IFR. We provide code for others to apply these methods to further datasets and future epidemics. |
format | Online Article Text |
id | pubmed-9120146 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-91201462022-05-20 Estimating the COVID-19 infection fatality ratio accounting for seroreversion using statistical modelling Brazeau, Nicholas F. Verity, Robert Jenks, Sara Fu, Han Whittaker, Charles Winskill, Peter Dorigatti, Ilaria Walker, Patrick G. T. Riley, Steven Schnekenberg, Ricardo P. Hoeltgebaum, Henrique Mellan, Thomas A. Mishra, Swapnil Unwin, H. Juliette T. Watson, Oliver J. Cucunubá, Zulma M. Baguelin, Marc Whittles, Lilith Bhatt, Samir Ghani, Azra C. Ferguson, Neil M. Okell, Lucy C. Commun Med (Lond) Article BACKGROUND: The infection fatality ratio (IFR) is a key statistic for estimating the burden of coronavirus disease 2019 (COVID-19) and has been continuously debated throughout the COVID-19 pandemic. The age-specific IFR can be quantified using antibody surveys to estimate total infections, but requires consideration of delay-distributions from time from infection to seroconversion, time to death, and time to seroreversion (i.e. antibody waning) alongside serologic test sensitivity and specificity. Previous IFR estimates have not fully propagated uncertainty or accounted for these potential biases, particularly seroreversion. METHODS: We built a Bayesian statistical model that incorporates these factors and applied this model to simulated data and 10 serologic studies from different countries. RESULTS: We demonstrate that seroreversion becomes a crucial factor as time accrues but is less important during first-wave, short-term dynamics. We additionally show that disaggregating surveys by regions with higher versus lower disease burden can inform serologic test specificity estimates. The overall IFR in each setting was estimated at 0.49–2.53%. CONCLUSION: We developed a robust statistical framework to account for full uncertainties in the parameters determining IFR. We provide code for others to apply these methods to further datasets and future epidemics. Nature Publishing Group UK 2022-05-19 /pmc/articles/PMC9120146/ /pubmed/35603270 http://dx.doi.org/10.1038/s43856-022-00106-7 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Brazeau, Nicholas F. Verity, Robert Jenks, Sara Fu, Han Whittaker, Charles Winskill, Peter Dorigatti, Ilaria Walker, Patrick G. T. Riley, Steven Schnekenberg, Ricardo P. Hoeltgebaum, Henrique Mellan, Thomas A. Mishra, Swapnil Unwin, H. Juliette T. Watson, Oliver J. Cucunubá, Zulma M. Baguelin, Marc Whittles, Lilith Bhatt, Samir Ghani, Azra C. Ferguson, Neil M. Okell, Lucy C. Estimating the COVID-19 infection fatality ratio accounting for seroreversion using statistical modelling |
title | Estimating the COVID-19 infection fatality ratio accounting for seroreversion using statistical modelling |
title_full | Estimating the COVID-19 infection fatality ratio accounting for seroreversion using statistical modelling |
title_fullStr | Estimating the COVID-19 infection fatality ratio accounting for seroreversion using statistical modelling |
title_full_unstemmed | Estimating the COVID-19 infection fatality ratio accounting for seroreversion using statistical modelling |
title_short | Estimating the COVID-19 infection fatality ratio accounting for seroreversion using statistical modelling |
title_sort | estimating the covid-19 infection fatality ratio accounting for seroreversion using statistical modelling |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120146/ https://www.ncbi.nlm.nih.gov/pubmed/35603270 http://dx.doi.org/10.1038/s43856-022-00106-7 |
work_keys_str_mv | AT brazeaunicholasf estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling AT verityrobert estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling AT jenkssara estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling AT fuhan estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling AT whittakercharles estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling AT winskillpeter estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling AT dorigattiilaria estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling AT walkerpatrickgt estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling AT rileysteven estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling AT schnekenbergricardop estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling AT hoeltgebaumhenrique estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling AT mellanthomasa estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling AT mishraswapnil estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling AT unwinhjuliettet estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling AT watsonoliverj estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling AT cucunubazulmam estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling AT baguelinmarc estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling AT whittleslilith estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling AT bhattsamir estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling AT ghaniazrac estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling AT fergusonneilm estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling AT okelllucyc estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling |