Cargando…

Estimating the COVID-19 infection fatality ratio accounting for seroreversion using statistical modelling

BACKGROUND: The infection fatality ratio (IFR) is a key statistic for estimating the burden of coronavirus disease 2019 (COVID-19) and has been continuously debated throughout the COVID-19 pandemic. The age-specific IFR can be quantified using antibody surveys to estimate total infections, but requi...

Descripción completa

Detalles Bibliográficos
Autores principales: Brazeau, Nicholas F., Verity, Robert, Jenks, Sara, Fu, Han, Whittaker, Charles, Winskill, Peter, Dorigatti, Ilaria, Walker, Patrick G. T., Riley, Steven, Schnekenberg, Ricardo P., Hoeltgebaum, Henrique, Mellan, Thomas A., Mishra, Swapnil, Unwin, H. Juliette T., Watson, Oliver J., Cucunubá, Zulma M., Baguelin, Marc, Whittles, Lilith, Bhatt, Samir, Ghani, Azra C., Ferguson, Neil M., Okell, Lucy C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120146/
https://www.ncbi.nlm.nih.gov/pubmed/35603270
http://dx.doi.org/10.1038/s43856-022-00106-7
_version_ 1784710870535766016
author Brazeau, Nicholas F.
Verity, Robert
Jenks, Sara
Fu, Han
Whittaker, Charles
Winskill, Peter
Dorigatti, Ilaria
Walker, Patrick G. T.
Riley, Steven
Schnekenberg, Ricardo P.
Hoeltgebaum, Henrique
Mellan, Thomas A.
Mishra, Swapnil
Unwin, H. Juliette T.
Watson, Oliver J.
Cucunubá, Zulma M.
Baguelin, Marc
Whittles, Lilith
Bhatt, Samir
Ghani, Azra C.
Ferguson, Neil M.
Okell, Lucy C.
author_facet Brazeau, Nicholas F.
Verity, Robert
Jenks, Sara
Fu, Han
Whittaker, Charles
Winskill, Peter
Dorigatti, Ilaria
Walker, Patrick G. T.
Riley, Steven
Schnekenberg, Ricardo P.
Hoeltgebaum, Henrique
Mellan, Thomas A.
Mishra, Swapnil
Unwin, H. Juliette T.
Watson, Oliver J.
Cucunubá, Zulma M.
Baguelin, Marc
Whittles, Lilith
Bhatt, Samir
Ghani, Azra C.
Ferguson, Neil M.
Okell, Lucy C.
author_sort Brazeau, Nicholas F.
collection PubMed
description BACKGROUND: The infection fatality ratio (IFR) is a key statistic for estimating the burden of coronavirus disease 2019 (COVID-19) and has been continuously debated throughout the COVID-19 pandemic. The age-specific IFR can be quantified using antibody surveys to estimate total infections, but requires consideration of delay-distributions from time from infection to seroconversion, time to death, and time to seroreversion (i.e. antibody waning) alongside serologic test sensitivity and specificity. Previous IFR estimates have not fully propagated uncertainty or accounted for these potential biases, particularly seroreversion. METHODS: We built a Bayesian statistical model that incorporates these factors and applied this model to simulated data and 10 serologic studies from different countries. RESULTS: We demonstrate that seroreversion becomes a crucial factor as time accrues but is less important during first-wave, short-term dynamics. We additionally show that disaggregating surveys by regions with higher versus lower disease burden can inform serologic test specificity estimates. The overall IFR in each setting was estimated at 0.49–2.53%. CONCLUSION: We developed a robust statistical framework to account for full uncertainties in the parameters determining IFR. We provide code for others to apply these methods to further datasets and future epidemics.
format Online
Article
Text
id pubmed-9120146
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-91201462022-05-20 Estimating the COVID-19 infection fatality ratio accounting for seroreversion using statistical modelling Brazeau, Nicholas F. Verity, Robert Jenks, Sara Fu, Han Whittaker, Charles Winskill, Peter Dorigatti, Ilaria Walker, Patrick G. T. Riley, Steven Schnekenberg, Ricardo P. Hoeltgebaum, Henrique Mellan, Thomas A. Mishra, Swapnil Unwin, H. Juliette T. Watson, Oliver J. Cucunubá, Zulma M. Baguelin, Marc Whittles, Lilith Bhatt, Samir Ghani, Azra C. Ferguson, Neil M. Okell, Lucy C. Commun Med (Lond) Article BACKGROUND: The infection fatality ratio (IFR) is a key statistic for estimating the burden of coronavirus disease 2019 (COVID-19) and has been continuously debated throughout the COVID-19 pandemic. The age-specific IFR can be quantified using antibody surveys to estimate total infections, but requires consideration of delay-distributions from time from infection to seroconversion, time to death, and time to seroreversion (i.e. antibody waning) alongside serologic test sensitivity and specificity. Previous IFR estimates have not fully propagated uncertainty or accounted for these potential biases, particularly seroreversion. METHODS: We built a Bayesian statistical model that incorporates these factors and applied this model to simulated data and 10 serologic studies from different countries. RESULTS: We demonstrate that seroreversion becomes a crucial factor as time accrues but is less important during first-wave, short-term dynamics. We additionally show that disaggregating surveys by regions with higher versus lower disease burden can inform serologic test specificity estimates. The overall IFR in each setting was estimated at 0.49–2.53%. CONCLUSION: We developed a robust statistical framework to account for full uncertainties in the parameters determining IFR. We provide code for others to apply these methods to further datasets and future epidemics. Nature Publishing Group UK 2022-05-19 /pmc/articles/PMC9120146/ /pubmed/35603270 http://dx.doi.org/10.1038/s43856-022-00106-7 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Brazeau, Nicholas F.
Verity, Robert
Jenks, Sara
Fu, Han
Whittaker, Charles
Winskill, Peter
Dorigatti, Ilaria
Walker, Patrick G. T.
Riley, Steven
Schnekenberg, Ricardo P.
Hoeltgebaum, Henrique
Mellan, Thomas A.
Mishra, Swapnil
Unwin, H. Juliette T.
Watson, Oliver J.
Cucunubá, Zulma M.
Baguelin, Marc
Whittles, Lilith
Bhatt, Samir
Ghani, Azra C.
Ferguson, Neil M.
Okell, Lucy C.
Estimating the COVID-19 infection fatality ratio accounting for seroreversion using statistical modelling
title Estimating the COVID-19 infection fatality ratio accounting for seroreversion using statistical modelling
title_full Estimating the COVID-19 infection fatality ratio accounting for seroreversion using statistical modelling
title_fullStr Estimating the COVID-19 infection fatality ratio accounting for seroreversion using statistical modelling
title_full_unstemmed Estimating the COVID-19 infection fatality ratio accounting for seroreversion using statistical modelling
title_short Estimating the COVID-19 infection fatality ratio accounting for seroreversion using statistical modelling
title_sort estimating the covid-19 infection fatality ratio accounting for seroreversion using statistical modelling
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120146/
https://www.ncbi.nlm.nih.gov/pubmed/35603270
http://dx.doi.org/10.1038/s43856-022-00106-7
work_keys_str_mv AT brazeaunicholasf estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling
AT verityrobert estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling
AT jenkssara estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling
AT fuhan estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling
AT whittakercharles estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling
AT winskillpeter estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling
AT dorigattiilaria estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling
AT walkerpatrickgt estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling
AT rileysteven estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling
AT schnekenbergricardop estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling
AT hoeltgebaumhenrique estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling
AT mellanthomasa estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling
AT mishraswapnil estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling
AT unwinhjuliettet estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling
AT watsonoliverj estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling
AT cucunubazulmam estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling
AT baguelinmarc estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling
AT whittleslilith estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling
AT bhattsamir estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling
AT ghaniazrac estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling
AT fergusonneilm estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling
AT okelllucyc estimatingthecovid19infectionfatalityratioaccountingforseroreversionusingstatisticalmodelling