Cargando…
Prediction of protein–protein interaction using graph neural networks
Proteins are the essential biological macromolecules required to perform nearly all biological processes, and cellular functions. Proteins rarely carry out their tasks in isolation but interact with other proteins (known as protein–protein interaction) present in their surroundings to complete biolo...
Autores principales: | Jha, Kanchan, Saha, Sriparna, Singh, Hiteshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120162/ https://www.ncbi.nlm.nih.gov/pubmed/35589837 http://dx.doi.org/10.1038/s41598-022-12201-9 |
Ejemplares similares
-
Graph-BERT and language model-based framework for protein–protein interaction identification
por: Jha, Kanchan, et al.
Publicado: (2023) -
Amalgamation of 3D structure and sequence information for protein–protein interaction prediction
por: Jha, Kanchan, et al.
Publicado: (2020) -
Graph Neural Network for Protein–Protein Interaction Prediction: A Comparative Study
por: Zhou, Hang, et al.
Publicado: (2022) -
De novo prediction of RNA–protein interactions with graph neural networks
por: Arora, Viplove, et al.
Publicado: (2022) -
Predicting lncRNA-protein interactions with bipartite graph embedding and deep graph neural networks
por: Ma, Yuzhou, et al.
Publicado: (2023)