Cargando…

Frontal cortical activation during emotional and non-emotional verbal fluency tests

There has been growing recognition of the utility of combining the verbal fluency test and functional near-infrared spectroscopy (fNIRS) to assess brain functioning and to screen for psychiatric disorders. Recently, an emotional analogue of the semantic fluency test (SFT) has been developed that tap...

Descripción completa

Detalles Bibliográficos
Autor principal: Yeung, Michael K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120192/
https://www.ncbi.nlm.nih.gov/pubmed/35589939
http://dx.doi.org/10.1038/s41598-022-12559-w
Descripción
Sumario:There has been growing recognition of the utility of combining the verbal fluency test and functional near-infrared spectroscopy (fNIRS) to assess brain functioning and to screen for psychiatric disorders. Recently, an emotional analogue of the semantic fluency test (SFT) has been developed that taps partly different processes from conventional verbal fluency tests. Nevertheless, neural processing during the emotional SFT remains elusive. Here, fNIRS was used to compare frontal cortical activation during emotional and non-emotional SFTs. The goal was to determine whether the emotional SFT activated overlapping yet distinct frontal cortical regions compared with the conventional, non-emotional SFT. Forty-three healthy young adults performed the emotional and non-emotional SFTs while hemodynamic changes in the bilateral frontopolar, dorsomedial, dorsolateral, ventrolateral, and posterolateral frontal cortices were measured by fNIRS. There were significant increases in oxyhemoglobin concentration and significant decreases in deoxyhemoglobin concentration (i.e., activation) in frontopolar, dorsolateral, and ventrolateral frontal regions during both the non-emotional and emotional SFTs. Also, complementary analyses conducted on changes in the two chromophores using classical and Bayesian hypothesis testing suggested that comparable frontal cortical regions were activated while performing the two tests. This similarity in activation occurred in a context where non-emotional and emotional SFT performances exhibited differential relationships with the overall level of negative mood symptoms. In conclusion, frontal cortical activation during the emotional SFT is similar to that during the conventional, non-emotional SFT. Given that there is evidence for discriminant validity for the emotional SFT, the neural mechanisms underlying the uniqueness of this test warrant further investigation.