Cargando…
Evaluation of long-chain fatty acid respiration in neonatal mouse cardiomyocytes using SeaHorse instrument
Metabolic switches play a critical role in the pathophysiology of cardiac diseases, including heart failure. Here, we describe an assay for long-chain fatty acid oxidation in neonatal mouse cardiomyocytes by using a SeaHorse Flux Analyzer (Agilent). This protocol is a simplified but robust adaptatio...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120230/ https://www.ncbi.nlm.nih.gov/pubmed/35600933 http://dx.doi.org/10.1016/j.xpro.2022.101392 |
Sumario: | Metabolic switches play a critical role in the pathophysiology of cardiac diseases, including heart failure. Here, we describe an assay for long-chain fatty acid oxidation in neonatal mouse cardiomyocytes by using a SeaHorse Flux Analyzer (Agilent). This protocol is a simplified but robust adaptation of the standard protocol that enables metabolic measurements in cells isolated from transgenic mouse models, which can be timesaving and informative. Cell isolation and culture represent a critical point that may require bench optimization. For complete details on the use and execution of this protocol, please refer to Angelini et al. (2021). |
---|