Cargando…
Differences in ligand-induced protein dynamics extracted from an unsupervised deep learning approach correlate with protein–ligand binding affinities
Prediction of protein–ligand binding affinity is a major goal in drug discovery. Generally, free energy gap is calculated between two states (e.g., ligand binding and unbinding). The energy gap implicitly includes the effects of changes in protein dynamics induced by ligand binding. However, the rel...
Autores principales: | Yasuda, Ikki, Endo, Katsuhiro, Yamamoto, Eiji, Hirano, Yoshinori, Yasuoka, Kenji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120437/ https://www.ncbi.nlm.nih.gov/pubmed/35589949 http://dx.doi.org/10.1038/s42003-022-03416-7 |
Ejemplares similares
-
Unsupervised deep learning for molecular dynamics simulations: a novel analysis of protein–ligand interactions in SARS-CoV-2 M(pro)
por: Mustali, Jessica, et al.
Publicado: (2023) -
An Efficient Computational Method for Calculating Ligand Binding Affinities
por: Suenaga, Atsushi, et al.
Publicado: (2012) -
DEELIG: A Deep Learning Approach to Predict Protein-Ligand Binding Affinity
por: Ahmed, Asad, et al.
Publicado: (2021) -
Discovery of High-Affinity Protein Binding Ligands – Backwards
por: Diehnelt, Chris W., et al.
Publicado: (2010) -
Development and evaluation of a deep learning model for protein–ligand binding affinity prediction
por: Stepniewska-Dziubinska, Marta M, et al.
Publicado: (2018)