Cargando…
Continuous Blood Pressure Estimation Based on Multi-Scale Feature Extraction by the Neural Network With Multi-Task Learning
In this article, a novel method for continuous blood pressure (BP) estimation based on multi-scale feature extraction by the neural network with multi-task learning (MST-net) has been proposed and evaluated. First, we preprocess the target (Electrocardiograph; Photoplethysmography) and label signals...
Autores principales: | Jiang, Hengbing, Zou, Lili, Huang, Dequn, Feng, Qianjin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120547/ https://www.ncbi.nlm.nih.gov/pubmed/35600611 http://dx.doi.org/10.3389/fnins.2022.883693 |
Ejemplares similares
-
Face Attribute Estimation Using Multi-Task Convolutional Neural Network
por: Kawai, Hiroya, et al.
Publicado: (2022) -
A Multi-Parameter Fusion Method for Cuffless Continuous Blood Pressure Estimation Based on Electrocardiogram and Photoplethysmogram
por: Ma, Gang, et al.
Publicado: (2023) -
Multi-Scale Spatio-Temporal Feature Extraction and Depth Estimation from Sequences by Ordinal Classification
por: Liu, Yang
Publicado: (2020) -
Multi‐model fusion of classifiers for blood pressure estimation
por: Ye, Qi, et al.
Publicado: (2021) -
Few-shot pulse wave contour classification based on multi-scale feature extraction
por: Lu, Peng, et al.
Publicado: (2021)