Cargando…

ENIGMA HALFpipe: Interactive, reproducible, and efficient analysis for resting‐state and task‐based fMRI data

The reproducibility crisis in neuroimaging has led to an increased demand for standardized data processing workflows. Within the ENIGMA consortium, we developed HALFpipe (Harmonized Analysis of Functional MRI pipeline), an open‐source, containerized, user‐friendly tool that facilitates reproducible...

Descripción completa

Detalles Bibliográficos
Autores principales: Waller, Lea, Erk, Susanne, Pozzi, Elena, Toenders, Yara J., Haswell, Courtney C., Büttner, Marc, Thompson, Paul M., Schmaal, Lianne, Morey, Rajendra A., Walter, Henrik, Veer, Ilya M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120555/
https://www.ncbi.nlm.nih.gov/pubmed/35305030
http://dx.doi.org/10.1002/hbm.25829
_version_ 1784710952808087552
author Waller, Lea
Erk, Susanne
Pozzi, Elena
Toenders, Yara J.
Haswell, Courtney C.
Büttner, Marc
Thompson, Paul M.
Schmaal, Lianne
Morey, Rajendra A.
Walter, Henrik
Veer, Ilya M.
author_facet Waller, Lea
Erk, Susanne
Pozzi, Elena
Toenders, Yara J.
Haswell, Courtney C.
Büttner, Marc
Thompson, Paul M.
Schmaal, Lianne
Morey, Rajendra A.
Walter, Henrik
Veer, Ilya M.
author_sort Waller, Lea
collection PubMed
description The reproducibility crisis in neuroimaging has led to an increased demand for standardized data processing workflows. Within the ENIGMA consortium, we developed HALFpipe (Harmonized Analysis of Functional MRI pipeline), an open‐source, containerized, user‐friendly tool that facilitates reproducible analysis of task‐based and resting‐state fMRI data through uniform application of preprocessing, quality assessment, single‐subject feature extraction, and group‐level statistics. It provides state‐of‐the‐art preprocessing using fMRIPrep without the requirement for input data in Brain Imaging Data Structure (BIDS) format. HALFpipe extends the functionality of fMRIPrep with additional preprocessing steps, which include spatial smoothing, grand mean scaling, temporal filtering, and confound regression. HALFpipe generates an interactive quality assessment (QA) webpage to rate the quality of key preprocessing outputs and raw data in general. HALFpipe features myriad post‐processing functions at the individual subject level, including calculation of task‐based activation, seed‐based connectivity, network‐template (or dual) regression, atlas‐based functional connectivity matrices, regional homogeneity (ReHo), and fractional amplitude of low‐frequency fluctuations (fALFF), offering support to evaluate a combinatorial number of features or preprocessing settings in one run. Finally, flexible factorial models can be defined for mixed‐effects regression analysis at the group level, including multiple comparison correction. Here, we introduce the theoretical framework in which HALFpipe was developed, and present an overview of the main functions of the pipeline. HALFpipe offers the scientific community a major advance toward addressing the reproducibility crisis in neuroimaging, providing a workflow that encompasses preprocessing, post‐processing, and QA of fMRI data, while broadening core principles of data analysis for producing reproducible results. Instructions and code can be found at https://github.com/HALFpipe/HALFpipe.
format Online
Article
Text
id pubmed-9120555
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-91205552022-05-21 ENIGMA HALFpipe: Interactive, reproducible, and efficient analysis for resting‐state and task‐based fMRI data Waller, Lea Erk, Susanne Pozzi, Elena Toenders, Yara J. Haswell, Courtney C. Büttner, Marc Thompson, Paul M. Schmaal, Lianne Morey, Rajendra A. Walter, Henrik Veer, Ilya M. Hum Brain Mapp Technical Report The reproducibility crisis in neuroimaging has led to an increased demand for standardized data processing workflows. Within the ENIGMA consortium, we developed HALFpipe (Harmonized Analysis of Functional MRI pipeline), an open‐source, containerized, user‐friendly tool that facilitates reproducible analysis of task‐based and resting‐state fMRI data through uniform application of preprocessing, quality assessment, single‐subject feature extraction, and group‐level statistics. It provides state‐of‐the‐art preprocessing using fMRIPrep without the requirement for input data in Brain Imaging Data Structure (BIDS) format. HALFpipe extends the functionality of fMRIPrep with additional preprocessing steps, which include spatial smoothing, grand mean scaling, temporal filtering, and confound regression. HALFpipe generates an interactive quality assessment (QA) webpage to rate the quality of key preprocessing outputs and raw data in general. HALFpipe features myriad post‐processing functions at the individual subject level, including calculation of task‐based activation, seed‐based connectivity, network‐template (or dual) regression, atlas‐based functional connectivity matrices, regional homogeneity (ReHo), and fractional amplitude of low‐frequency fluctuations (fALFF), offering support to evaluate a combinatorial number of features or preprocessing settings in one run. Finally, flexible factorial models can be defined for mixed‐effects regression analysis at the group level, including multiple comparison correction. Here, we introduce the theoretical framework in which HALFpipe was developed, and present an overview of the main functions of the pipeline. HALFpipe offers the scientific community a major advance toward addressing the reproducibility crisis in neuroimaging, providing a workflow that encompasses preprocessing, post‐processing, and QA of fMRI data, while broadening core principles of data analysis for producing reproducible results. Instructions and code can be found at https://github.com/HALFpipe/HALFpipe. John Wiley & Sons, Inc. 2022-03-19 /pmc/articles/PMC9120555/ /pubmed/35305030 http://dx.doi.org/10.1002/hbm.25829 Text en © 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Technical Report
Waller, Lea
Erk, Susanne
Pozzi, Elena
Toenders, Yara J.
Haswell, Courtney C.
Büttner, Marc
Thompson, Paul M.
Schmaal, Lianne
Morey, Rajendra A.
Walter, Henrik
Veer, Ilya M.
ENIGMA HALFpipe: Interactive, reproducible, and efficient analysis for resting‐state and task‐based fMRI data
title ENIGMA HALFpipe: Interactive, reproducible, and efficient analysis for resting‐state and task‐based fMRI data
title_full ENIGMA HALFpipe: Interactive, reproducible, and efficient analysis for resting‐state and task‐based fMRI data
title_fullStr ENIGMA HALFpipe: Interactive, reproducible, and efficient analysis for resting‐state and task‐based fMRI data
title_full_unstemmed ENIGMA HALFpipe: Interactive, reproducible, and efficient analysis for resting‐state and task‐based fMRI data
title_short ENIGMA HALFpipe: Interactive, reproducible, and efficient analysis for resting‐state and task‐based fMRI data
title_sort enigma halfpipe: interactive, reproducible, and efficient analysis for resting‐state and task‐based fmri data
topic Technical Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120555/
https://www.ncbi.nlm.nih.gov/pubmed/35305030
http://dx.doi.org/10.1002/hbm.25829
work_keys_str_mv AT wallerlea enigmahalfpipeinteractivereproducibleandefficientanalysisforrestingstateandtaskbasedfmridata
AT erksusanne enigmahalfpipeinteractivereproducibleandefficientanalysisforrestingstateandtaskbasedfmridata
AT pozzielena enigmahalfpipeinteractivereproducibleandefficientanalysisforrestingstateandtaskbasedfmridata
AT toendersyaraj enigmahalfpipeinteractivereproducibleandefficientanalysisforrestingstateandtaskbasedfmridata
AT haswellcourtneyc enigmahalfpipeinteractivereproducibleandefficientanalysisforrestingstateandtaskbasedfmridata
AT buttnermarc enigmahalfpipeinteractivereproducibleandefficientanalysisforrestingstateandtaskbasedfmridata
AT thompsonpaulm enigmahalfpipeinteractivereproducibleandefficientanalysisforrestingstateandtaskbasedfmridata
AT schmaallianne enigmahalfpipeinteractivereproducibleandefficientanalysisforrestingstateandtaskbasedfmridata
AT moreyrajendraa enigmahalfpipeinteractivereproducibleandefficientanalysisforrestingstateandtaskbasedfmridata
AT walterhenrik enigmahalfpipeinteractivereproducibleandefficientanalysisforrestingstateandtaskbasedfmridata
AT veerilyam enigmahalfpipeinteractivereproducibleandefficientanalysisforrestingstateandtaskbasedfmridata