Cargando…
Machine Learning for Prediction of Outcomes in Cardiogenic Shock
OBJECTIVE: The management of cardiogenic shock (CS) in the elderly remains a major clinical challenge. Existing clinical prediction models have not performed well in assessing the prognosis of elderly patients with CS. This study aims to build a predictive model, which could better predict the 30-da...
Autores principales: | Rong, Fangning, Xiang, Huaqiang, Qian, Lu, Xue, Yangjing, Ji, Kangting, Yin, Ripen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120613/ https://www.ncbi.nlm.nih.gov/pubmed/35600489 http://dx.doi.org/10.3389/fcvm.2022.849688 |
Ejemplares similares
-
Prognostic Value of Neutrophil-Lymphocyte Ratio in Cardiogenic Shock: A Cohort Study
por: Peng, Yangpei, et al.
Publicado: (2020) -
Early Prediction of Cardiogenic Shock Using Machine Learning
por: Chang, Yale, et al.
Publicado: (2022) -
Data processing pipeline for cardiogenic shock prediction using machine learning
por: Jajcay, Nikola, et al.
Publicado: (2023) -
Association between neutrophil-to-albumin ratio and mortality in patients with cardiogenic shock: a retrospective cohort study
por: Peng, Yangpei, et al.
Publicado: (2020) -
The Association Between Left Ventricular Hypertrophy and the Occurrence and Prognosis of Atrial Fibrillation: A Meta-Analysis
por: Xiang, Huaqiang, et al.
Publicado: (2021)