Cargando…

Functional redundancy among Polycomb complexes in maintaining the pluripotent state of embryonic stem cells

Polycomb group proteins assemble into multi-protein complexes, known as Polycomb repressive complexes 1 and 2 (PRC1 and PRC2), that guide cell fate decisions during embryonic development. PRC1 forms an array of biochemically distinct canonical PRC1 (cPRC1) or non-canonical PRC1 (ncPRC1) complexes ch...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Yaru, Dong, Lixia, Wang, Congcong, Hao, Kunying, Wang, Jingnan, Zhao, Linchun, Xu, Lijun, Xia, Yin, Jiang, Qing, Qin, Jinzhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120860/
https://www.ncbi.nlm.nih.gov/pubmed/35364009
http://dx.doi.org/10.1016/j.stemcr.2022.02.020
Descripción
Sumario:Polycomb group proteins assemble into multi-protein complexes, known as Polycomb repressive complexes 1 and 2 (PRC1 and PRC2), that guide cell fate decisions during embryonic development. PRC1 forms an array of biochemically distinct canonical PRC1 (cPRC1) or non-canonical PRC1 (ncPRC1) complexes characterized by the mutually exclusive presence of PCGF (PCGF1-PCGF6) paralog subunit; however, whether each one of these subcomplexes fulfills a distinct role remains largely controversial. Here, by performing a CRISPR-based loss-of-function screen in embryonic stem cells (ESCs), we uncovered a previously unappreciated functional redundancy among PRC1 subcomplexes. Disruption of ncPRC1, but not cPRC1, displayed severe defects in ESC pluripotency. Remarkably, coablation of non-canonical and canonical PRC1 in ESCs resulted in exacerbation of the phenotype observed in the non-canonical PRC1-null ESCs, highlighting the importance of functional redundancy among PRC1 subcomplexes. Together, our studies demonstrate that PRC1 subcomplexes act redundantly to silence lineage-specific genes and ensure robust maintenance of ESC identity.