Cargando…
A Topic Modeling Comparison Between LDA, NMF, Top2Vec, and BERTopic to Demystify Twitter Posts
The richness of social media data has opened a new avenue for social science research to gain insights into human behaviors and experiences. In particular, emerging data-driven approaches relying on topic models provide entirely new perspectives on interpreting social phenomena. However, the short,...
Autores principales: | Egger, Roman, Yu, Joanne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120935/ https://www.ncbi.nlm.nih.gov/pubmed/35602001 http://dx.doi.org/10.3389/fsoc.2022.886498 |
Ejemplares similares
-
Application of LDA and word2vec to detect English off-topic composition
por: Qi, Yilan, et al.
Publicado: (2022) -
Retraction: Application of LDA and word2vec to detect English off-topic composition
Publicado: (2023) -
Experiments with LDA and Top2Vec for embedded topic discovery on social media data—A case study of cystic fibrosis
por: Karas, Bradley, et al.
Publicado: (2022) -
#Lorrydeaths: Structural Topic Modeling of Twitter Users' Attitudes About the Deaths of 39 Vietnamese Migrants to the United Kingdom
por: Than, Nga, et al.
Publicado: (2022) -
An effective short-text topic modelling with neighbourhood assistance-driven NMF in Twitter
por: Athukorala, Shalani, et al.
Publicado: (2022)