Cargando…
Deep learning‐based auto segmentation using generative adversarial network on magnetic resonance images obtained for head and neck cancer patients
PURPOSE: Adaptive radiotherapy requires auto‐segmentation in patients with head and neck (HN) cancer. In the current study, we propose an auto‐segmentation model using a generative adversarial network (GAN) on magnetic resonance (MR) images of HN cancer for MR‐guided radiotherapy (MRgRT). MATERIAL A...
Autores principales: | Kawahara, Daisuke, Tsuneda, Masato, Ozawa, Shuichi, Okamoto, Hiroyuki, Nakamura, Mitsuhiro, Nishio, Teiji, Nagata, Yasushi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9121028/ https://www.ncbi.nlm.nih.gov/pubmed/35263027 http://dx.doi.org/10.1002/acm2.13579 |
Ejemplares similares
-
Effect of secondary electron generation on dose enhancement in Lipiodol with and without a flattening filter
por: Kawahara, Daisuke, et al.
Publicado: (2018) -
Image synthesis of monoenergetic CT image in dual‐energy CT using kilovoltage CT with deep convolutional generative adversarial networks
por: Kawahara, Daisuke, et al.
Publicado: (2021) -
Image synthesis of effective atomic number images using a deep convolutional neural network-based generative adversarial network
por: Kawahara, Daisuke, et al.
Publicado: (2022) -
Assessment of biological dosimetric margin for stereotactic body radiation therapy
por: Kawahara, Daisuke, et al.
Publicado: (2020) -
Photon and electron backscatter dose and energy spectrum analysis around Lipiodol using flattened and unflattened beams
por: Kawahara, Daisuke, et al.
Publicado: (2019)