Cargando…
The auto segmentation for cardiac structures using a dual‐input deep learning network based on vision saliency and transformer
PURPOSE: Accurate segmentation of cardiac structures on coronary CT angiography (CCTA) images is crucial for the morphological analysis, measurement, and functional evaluation. In this study, we achieve accurate automatic segmentation of cardiac structures on CCTA image by adopting an innovative dee...
Autores principales: | Wang, Jing, Wang, Shuyu, Liang, Wei, Zhang, Nan, Zhang, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9121042/ https://www.ncbi.nlm.nih.gov/pubmed/35363415 http://dx.doi.org/10.1002/acm2.13597 |
Ejemplares similares
-
NVTrans‐UNet: Neighborhood vision transformer based U‐Net for multi‐modal cardiac MR image segmentation
por: Li, Bingjie, et al.
Publicado: (2023) -
Fully automatic tumor segmentation of breast ultrasound images with deep learning
por: Zhang, Shuai, et al.
Publicado: (2022) -
Lumbar spine segmentation method based on deep learning
por: Lu, Hongjiang, et al.
Publicado: (2023) -
Dual‐input tracer kinetic modeling of dynamic contrast‐enhanced MRI in thoracic malignancies
por: Lee, Sang Ho, et al.
Publicado: (2019) -
Hepatic vessels segmentation using deep learning and preprocessing enhancement
por: Alirr, Omar Ibrahim, et al.
Publicado: (2023)