Cargando…
Feasibility of using ring‐mounted Halcyon Linac for single‐isocenter/two‐lesion lung stereotactic body radiation therapy
PURPOSE: To demonstrate the plan quality and delivery efficiency of volumetric‐modulated arc therapy (VMAT) with the Halcyon Linac ring delivery system (RDS) in the treatment of single‐isocenter/two‐lesion lung stereotactic body radiation therapy (SBRT). MATERIALS/METHODS: Sixteen previously treated...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9121043/ https://www.ncbi.nlm.nih.gov/pubmed/35128795 http://dx.doi.org/10.1002/acm2.13555 |
_version_ | 1784711070366040064 |
---|---|
author | Pokhrel, Damodar Webster, Aaron Mallory, Richard Visak, Justin Bernard, Mark E. McGarry, Ronald C. Kudrimoti, Mahesh |
author_facet | Pokhrel, Damodar Webster, Aaron Mallory, Richard Visak, Justin Bernard, Mark E. McGarry, Ronald C. Kudrimoti, Mahesh |
author_sort | Pokhrel, Damodar |
collection | PubMed |
description | PURPOSE: To demonstrate the plan quality and delivery efficiency of volumetric‐modulated arc therapy (VMAT) with the Halcyon Linac ring delivery system (RDS) in the treatment of single‐isocenter/two‐lesion lung stereotactic body radiation therapy (SBRT). MATERIALS/METHODS: Sixteen previously treated non‐coplanar VMAT single‐isocenter/two‐lesion lung SBRT plans delivered with SBRT‐dedicated C‐arm TrueBeam Linac were selected. Prescribed dose was 50 Gy to each lesion over five fractions with treatment delivery every other day and AcurosXB algorithm as the final dose calculation algorithm. TrueBeam single‐isocenter plans were reoptimized for Halcyon Linac with coplanar geometry. Both TrueBeam and Halcyon plans were normalized for identical combined target coverage and evaluated. Conformity indices (CIs), heterogeneity index (HI), gradient index (GI), gradient distance (GD), and D (2cm) were compared. The normal lung V5Gy, V10Gy, V20Gy, mean lung dose (MLD), and dose to organs at risk (OAR) were evaluated. Treatment delivery parameters, including beam‐on time, were recorded. RESULTS: Halcyon plans were statistically similar to clinically delivered TrueBeam plans. No statistical differences in target conformity, dose heterogeneity, or intermediate‐dose spillage were observed (all, p > 0.05). Halcyon plans, on average, demonstrated statistically insignificant reduced maximum dose to most adjacent OAR and normal lung. However, Halcyon yielded statistically significant lower maximal dose to the ribs (p = 0.041) and heart (p = 0.026), dose to 1 cc of ribs (p = 0.035) and dose to 5 cc of esophagus (p = 0.043). Plan complexity slightly increased as seen in the average increase of total monitor units, modulation factor, and beam‐on time by 480, 0.48, and 2.78 min, respectively. However, the estimated overall treatment time was reduced by 2.22 min, on average. Mean dose delivery accuracy of clinical TrueBeam plans and the corresponding Halcyon plans was 98.9 ± 0.85% (range: 98.1%–100%) and 98.45 ± 0.99% (range: 97.9%–100%), respectively, demonstrating similar treatment delivery accuracy. CONCLUSION: SBRT treatment of synchronous lung lesions via single‐isocenter VMAT on Halcyon RDS is feasible and dosimetrically equivalent to clinically delivered TrueBeam plans. Halcyon provides excellent plan quality and shorter overall treatment time that may improve patient compliance, reduce intrafraction movement, improve clinic efficiency, and potentially offering lung SBRT treatments for underserved patients on a Halcyon only clinic. |
format | Online Article Text |
id | pubmed-9121043 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-91210432022-05-21 Feasibility of using ring‐mounted Halcyon Linac for single‐isocenter/two‐lesion lung stereotactic body radiation therapy Pokhrel, Damodar Webster, Aaron Mallory, Richard Visak, Justin Bernard, Mark E. McGarry, Ronald C. Kudrimoti, Mahesh J Appl Clin Med Phys Radiation Oncology Physics PURPOSE: To demonstrate the plan quality and delivery efficiency of volumetric‐modulated arc therapy (VMAT) with the Halcyon Linac ring delivery system (RDS) in the treatment of single‐isocenter/two‐lesion lung stereotactic body radiation therapy (SBRT). MATERIALS/METHODS: Sixteen previously treated non‐coplanar VMAT single‐isocenter/two‐lesion lung SBRT plans delivered with SBRT‐dedicated C‐arm TrueBeam Linac were selected. Prescribed dose was 50 Gy to each lesion over five fractions with treatment delivery every other day and AcurosXB algorithm as the final dose calculation algorithm. TrueBeam single‐isocenter plans were reoptimized for Halcyon Linac with coplanar geometry. Both TrueBeam and Halcyon plans were normalized for identical combined target coverage and evaluated. Conformity indices (CIs), heterogeneity index (HI), gradient index (GI), gradient distance (GD), and D (2cm) were compared. The normal lung V5Gy, V10Gy, V20Gy, mean lung dose (MLD), and dose to organs at risk (OAR) were evaluated. Treatment delivery parameters, including beam‐on time, were recorded. RESULTS: Halcyon plans were statistically similar to clinically delivered TrueBeam plans. No statistical differences in target conformity, dose heterogeneity, or intermediate‐dose spillage were observed (all, p > 0.05). Halcyon plans, on average, demonstrated statistically insignificant reduced maximum dose to most adjacent OAR and normal lung. However, Halcyon yielded statistically significant lower maximal dose to the ribs (p = 0.041) and heart (p = 0.026), dose to 1 cc of ribs (p = 0.035) and dose to 5 cc of esophagus (p = 0.043). Plan complexity slightly increased as seen in the average increase of total monitor units, modulation factor, and beam‐on time by 480, 0.48, and 2.78 min, respectively. However, the estimated overall treatment time was reduced by 2.22 min, on average. Mean dose delivery accuracy of clinical TrueBeam plans and the corresponding Halcyon plans was 98.9 ± 0.85% (range: 98.1%–100%) and 98.45 ± 0.99% (range: 97.9%–100%), respectively, demonstrating similar treatment delivery accuracy. CONCLUSION: SBRT treatment of synchronous lung lesions via single‐isocenter VMAT on Halcyon RDS is feasible and dosimetrically equivalent to clinically delivered TrueBeam plans. Halcyon provides excellent plan quality and shorter overall treatment time that may improve patient compliance, reduce intrafraction movement, improve clinic efficiency, and potentially offering lung SBRT treatments for underserved patients on a Halcyon only clinic. John Wiley and Sons Inc. 2022-02-07 /pmc/articles/PMC9121043/ /pubmed/35128795 http://dx.doi.org/10.1002/acm2.13555 Text en © 2022 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, LLC on behalf of The American Association of Physicists in Medicine. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Radiation Oncology Physics Pokhrel, Damodar Webster, Aaron Mallory, Richard Visak, Justin Bernard, Mark E. McGarry, Ronald C. Kudrimoti, Mahesh Feasibility of using ring‐mounted Halcyon Linac for single‐isocenter/two‐lesion lung stereotactic body radiation therapy |
title | Feasibility of using ring‐mounted Halcyon Linac for single‐isocenter/two‐lesion lung stereotactic body radiation therapy |
title_full | Feasibility of using ring‐mounted Halcyon Linac for single‐isocenter/two‐lesion lung stereotactic body radiation therapy |
title_fullStr | Feasibility of using ring‐mounted Halcyon Linac for single‐isocenter/two‐lesion lung stereotactic body radiation therapy |
title_full_unstemmed | Feasibility of using ring‐mounted Halcyon Linac for single‐isocenter/two‐lesion lung stereotactic body radiation therapy |
title_short | Feasibility of using ring‐mounted Halcyon Linac for single‐isocenter/two‐lesion lung stereotactic body radiation therapy |
title_sort | feasibility of using ring‐mounted halcyon linac for single‐isocenter/two‐lesion lung stereotactic body radiation therapy |
topic | Radiation Oncology Physics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9121043/ https://www.ncbi.nlm.nih.gov/pubmed/35128795 http://dx.doi.org/10.1002/acm2.13555 |
work_keys_str_mv | AT pokhreldamodar feasibilityofusingringmountedhalcyonlinacforsingleisocentertwolesionlungstereotacticbodyradiationtherapy AT websteraaron feasibilityofusingringmountedhalcyonlinacforsingleisocentertwolesionlungstereotacticbodyradiationtherapy AT malloryrichard feasibilityofusingringmountedhalcyonlinacforsingleisocentertwolesionlungstereotacticbodyradiationtherapy AT visakjustin feasibilityofusingringmountedhalcyonlinacforsingleisocentertwolesionlungstereotacticbodyradiationtherapy AT bernardmarke feasibilityofusingringmountedhalcyonlinacforsingleisocentertwolesionlungstereotacticbodyradiationtherapy AT mcgarryronaldc feasibilityofusingringmountedhalcyonlinacforsingleisocentertwolesionlungstereotacticbodyradiationtherapy AT kudrimotimahesh feasibilityofusingringmountedhalcyonlinacforsingleisocentertwolesionlungstereotacticbodyradiationtherapy |