Cargando…
Elucidation of the mechanism of miR-122-5p in mediating FOXO3 injury and apoptosis of mouse cochlear hair cells induced by hydrogen peroxide
Unveiling the mechanism of miR-122-5p in the mediation of forkhead box O3 (FOXO3) in regards to cochlear hair cell damage provides an effective solution for the treatment of ear hearing disorders. An oxidative stress model using a mouse cochlear hair cell line (HEI-OC1) was established via hydrogen...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9121211/ https://www.ncbi.nlm.nih.gov/pubmed/35607378 http://dx.doi.org/10.3892/etm.2022.11362 |
_version_ | 1784711107548545024 |
---|---|
author | Chen, Jiajun Qin, Jixin Liu, Jin |
author_facet | Chen, Jiajun Qin, Jixin Liu, Jin |
author_sort | Chen, Jiajun |
collection | PubMed |
description | Unveiling the mechanism of miR-122-5p in the mediation of forkhead box O3 (FOXO3) in regards to cochlear hair cell damage provides an effective solution for the treatment of ear hearing disorders. An oxidative stress model using a mouse cochlear hair cell line (HEI-OC1) was established via hydrogen peroxide (H(2)O(2)). Then HEI-OC1 cells were transfected with miR-122-5p mimic, miR-122-5p inhibitor, and lentiviral vector FOXO3-WT/MUT. Cell viability and apoptosis rate were determined by MTT assay and flow cytometry. Reactive oxygen species (ROS) were observed by confocal laser scanning microscopy. Bcl-2, Bax, capase-3 and c-caspase-9 levels were quantified by western blot analysis and quantitative reverse transcription polymerase chain reaction (RT-qPCR). Enzyme-linked immunosorbent assay (ELISA) was used to detect superoxide dismutase (SOD) and malondialdehyde (MDA) levels, and flow cytometry was performed to measure the mitochondrial membrane potential levels. In the HEI-OC1 oxidative stress model after transfection, the miR-122-5p level was decreased, whereas the FOXO3 level was increased, Moreover, the increased FOXO3 level diminished the cell viability, but promoted cell apoptosis. Apart from this, the Bcl-2 level was downregulated, while levels of Bax, c-caspase-3, c-caspase-9, ROS and MDA were upregulated. Meanwhile, the mitochondrial membrane potential level was also elevated. Overexpression of miR-122-5p was able to partially offset the effects of FOXO3 in the H(2)O(2)-treated HEI-OC1 cells. Collectively, miR-122-5p restrained the decrease in HEI-OC1 cell viability and apoptosis induced by treatment with H(2)O(2). |
format | Online Article Text |
id | pubmed-9121211 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-91212112022-05-22 Elucidation of the mechanism of miR-122-5p in mediating FOXO3 injury and apoptosis of mouse cochlear hair cells induced by hydrogen peroxide Chen, Jiajun Qin, Jixin Liu, Jin Exp Ther Med Articles Unveiling the mechanism of miR-122-5p in the mediation of forkhead box O3 (FOXO3) in regards to cochlear hair cell damage provides an effective solution for the treatment of ear hearing disorders. An oxidative stress model using a mouse cochlear hair cell line (HEI-OC1) was established via hydrogen peroxide (H(2)O(2)). Then HEI-OC1 cells were transfected with miR-122-5p mimic, miR-122-5p inhibitor, and lentiviral vector FOXO3-WT/MUT. Cell viability and apoptosis rate were determined by MTT assay and flow cytometry. Reactive oxygen species (ROS) were observed by confocal laser scanning microscopy. Bcl-2, Bax, capase-3 and c-caspase-9 levels were quantified by western blot analysis and quantitative reverse transcription polymerase chain reaction (RT-qPCR). Enzyme-linked immunosorbent assay (ELISA) was used to detect superoxide dismutase (SOD) and malondialdehyde (MDA) levels, and flow cytometry was performed to measure the mitochondrial membrane potential levels. In the HEI-OC1 oxidative stress model after transfection, the miR-122-5p level was decreased, whereas the FOXO3 level was increased, Moreover, the increased FOXO3 level diminished the cell viability, but promoted cell apoptosis. Apart from this, the Bcl-2 level was downregulated, while levels of Bax, c-caspase-3, c-caspase-9, ROS and MDA were upregulated. Meanwhile, the mitochondrial membrane potential level was also elevated. Overexpression of miR-122-5p was able to partially offset the effects of FOXO3 in the H(2)O(2)-treated HEI-OC1 cells. Collectively, miR-122-5p restrained the decrease in HEI-OC1 cell viability and apoptosis induced by treatment with H(2)O(2). D.A. Spandidos 2022-06 2022-05-09 /pmc/articles/PMC9121211/ /pubmed/35607378 http://dx.doi.org/10.3892/etm.2022.11362 Text en Copyright: © Chen et al. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Chen, Jiajun Qin, Jixin Liu, Jin Elucidation of the mechanism of miR-122-5p in mediating FOXO3 injury and apoptosis of mouse cochlear hair cells induced by hydrogen peroxide |
title | Elucidation of the mechanism of miR-122-5p in mediating FOXO3 injury and apoptosis of mouse cochlear hair cells induced by hydrogen peroxide |
title_full | Elucidation of the mechanism of miR-122-5p in mediating FOXO3 injury and apoptosis of mouse cochlear hair cells induced by hydrogen peroxide |
title_fullStr | Elucidation of the mechanism of miR-122-5p in mediating FOXO3 injury and apoptosis of mouse cochlear hair cells induced by hydrogen peroxide |
title_full_unstemmed | Elucidation of the mechanism of miR-122-5p in mediating FOXO3 injury and apoptosis of mouse cochlear hair cells induced by hydrogen peroxide |
title_short | Elucidation of the mechanism of miR-122-5p in mediating FOXO3 injury and apoptosis of mouse cochlear hair cells induced by hydrogen peroxide |
title_sort | elucidation of the mechanism of mir-122-5p in mediating foxo3 injury and apoptosis of mouse cochlear hair cells induced by hydrogen peroxide |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9121211/ https://www.ncbi.nlm.nih.gov/pubmed/35607378 http://dx.doi.org/10.3892/etm.2022.11362 |
work_keys_str_mv | AT chenjiajun elucidationofthemechanismofmir1225pinmediatingfoxo3injuryandapoptosisofmousecochlearhaircellsinducedbyhydrogenperoxide AT qinjixin elucidationofthemechanismofmir1225pinmediatingfoxo3injuryandapoptosisofmousecochlearhaircellsinducedbyhydrogenperoxide AT liujin elucidationofthemechanismofmir1225pinmediatingfoxo3injuryandapoptosisofmousecochlearhaircellsinducedbyhydrogenperoxide |