Cargando…
Using fluorescence anisotropy to monitor chaperone dispersal of RNA-binding protein condensates
Heat stress triggers a specific set of proteins in budding yeast to form solid-like biomolecular condensates, which are dispersed by molecular chaperones. Here, we describe a protocol to study the kinetics of chaperone-facilitated condensate dispersal using biochemical reconstitution and fluorescenc...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9121323/ https://www.ncbi.nlm.nih.gov/pubmed/35600925 http://dx.doi.org/10.1016/j.xpro.2022.101409 |
Sumario: | Heat stress triggers a specific set of proteins in budding yeast to form solid-like biomolecular condensates, which are dispersed by molecular chaperones. Here, we describe a protocol to study the kinetics of chaperone-facilitated condensate dispersal using biochemical reconstitution and fluorescence anisotropy. Although the current protocol is tailored to study heat-induced condensates of poly(A)-binding protein (Pab1), the protocol can be modified to study any protein which shows differential substrate binding activity upon condensation. For complete details on the use and execution of this protocol, please refer to Yoo et al. (2022). |
---|