Cargando…
Gene expression data classification using topology and machine learning models
BACKGROUND: Interpretation of high-throughput gene expression data continues to require mathematical tools in data analysis that recognizes the shape of the data in high dimensions. Topological data analysis (TDA) has recently been successful in extracting robust features in several applications dea...
Autores principales: | Dey, Tamal K., Mandal, Sayan, Mukherjee, Soham |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9121583/ https://www.ncbi.nlm.nih.gov/pubmed/35596135 http://dx.doi.org/10.1186/s12859-022-04704-z |
Ejemplares similares
-
Determining clinically relevant features in cytometry data using persistent homology
por: Mukherjee, Soham, et al.
Publicado: (2022) -
A Topological Data Analysis Approach on Predicting Phenotypes from Gene Expression Data
por: Mandal, Sayan, et al.
Publicado: (2020) -
Machine Learning Methods for Cancer Classification Using Gene Expression Data: A Review
por: Alharbi, Fadi, et al.
Publicado: (2023) -
Machine Learning-Based Classification of Abnormal Liver Tissues Using Relative Permittivity
por: Samaddar, Poulami, et al.
Publicado: (2022) -
Advanced data analytics using Python: with machine learning, deep learning and NLP examples
por: Mukhopadhyay, Sayan
Publicado: (2018)