Cargando…
WBC image classification and generative models based on convolutional neural network
BACKGROUND: Computer-aided methods for analyzing white blood cells (WBC) are popular due to the complexity of the manual alternatives. Recent works have shown highly accurate segmentation and detection of white blood cells from microscopic blood images. However, the classification of the observed ce...
Autores principales: | Jung, Changhun, Abuhamad, Mohammed, Mohaisen, David, Han, Kyungja, Nyang, DaeHun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9121596/ https://www.ncbi.nlm.nih.gov/pubmed/35596153 http://dx.doi.org/10.1186/s12880-022-00818-1 |
Ejemplares similares
-
WBC-AMNet: Automatic classification of WBC images using deep feature fusion network based on focalized attention mechanism
por: Wang, Ziyi, et al.
Publicado: (2022) -
WBC-based segmentation and classification on microscopic images: a minor improvement
por: Lam, Xin-Hui, et al.
Publicado: (2021) -
WBC Image Segmentation Based on Residual Networks and Attentional Mechanisms
por: Wu, Jiangping, et al.
Publicado: (2022) -
XDecompo: Explainable Decomposition Approach in Convolutional Neural Networks for Tumour Image Classification
por: Abbas, Asmaa, et al.
Publicado: (2022) -
Deep Convolutional Neural Networks With Ensemble Learning and Generative Adversarial Networks for Alzheimer’s Disease Image Data Classification
por: Logan, Robert, et al.
Publicado: (2021)