Cargando…
Parsimonious model for mass-univariate vertexwise analysis
PURPOSE: Covariance between gray-matter measurements can reflect structural or functional brain networks though it has also been shown to be influenced by confounding factors (e.g., age, head size, and scanner), which could lead to lower mapping precision (increased size of associated clusters) and...
Autores principales: | Couvy-Duchesne, Baptiste, Zhang, Futao, Kemper, Kathryn E., Sidorenko, Julia, Wray, Naomi R., Visscher, Peter M., Colliot, Olivier, Yang, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9122091/ https://www.ncbi.nlm.nih.gov/pubmed/35610986 http://dx.doi.org/10.1117/1.JMI.9.5.052404 |
Ejemplares similares
-
Special Section Guest Editorial: Advances in High-Dimensional Medical Image Processing
por: Išgum, Ivana, et al.
Publicado: (2022) -
Knowledge distillation with ensembles of convolutional neural networks for medical image segmentation
por: Noothout, Julia M. H., et al.
Publicado: (2022) -
Measuring brain atrophy with a generalized formulation of the boundary shift integral()
por: Prados, Ferran, et al.
Publicado: (2015) -
A unified framework for association and prediction from vertex‐wise grey‐matter structure
por: Couvy‐Duchesne, Baptiste, et al.
Publicado: (2020) -
Multiset sparse redundancy analysis for high‐dimensional omics data
por: Csala, Attila, et al.
Publicado: (2018)