Cargando…
Information Extraction from the Text Data on Traditional Chinese Medicine: A Review on Tasks, Challenges, and Methods from 2010 to 2021
BACKGROUND: The practice of traditional Chinese medicine (TCM) began several thousand years ago, and the knowledge of practitioners is recorded in paper and electronic versions of case notes, manuscripts, and books in multiple languages. Developing a method of information extraction (IE) from these...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9122692/ https://www.ncbi.nlm.nih.gov/pubmed/35600940 http://dx.doi.org/10.1155/2022/1679589 |
_version_ | 1784711398601785344 |
---|---|
author | Zhang, Tingting Huang, Zonghai Wang, Yaqiang Wen, Chuanbiao Peng, Yangzhi Ye, Ying |
author_facet | Zhang, Tingting Huang, Zonghai Wang, Yaqiang Wen, Chuanbiao Peng, Yangzhi Ye, Ying |
author_sort | Zhang, Tingting |
collection | PubMed |
description | BACKGROUND: The practice of traditional Chinese medicine (TCM) began several thousand years ago, and the knowledge of practitioners is recorded in paper and electronic versions of case notes, manuscripts, and books in multiple languages. Developing a method of information extraction (IE) from these sources to generate a cohesive data set would be a great contribution to the medical field. The goal of this study was to perform a systematic review of the status of IE from TCM sources over the last 10 years. METHODS: We conducted a search of four literature databases for articles published from 2010 to 2021 that focused on the use of natural language processing (NLP) methods to extract information from unstructured TCM text data. Two reviewers and one adjudicator contributed to article search, article selection, data extraction, and synthesis processes. RESULTS: We retrieved 1234 records, 49 of which met our inclusion criteria. We used the articles to (i) assess the key tasks of IE in the TCM domain, (ii) summarize the challenges to extracting information from TCM text data, and (iii) identify effective frameworks, models, and key findings of TCM IE through classification. CONCLUSIONS: Our analysis showed that IE from TCM text data has improved over the past decade. However, the extraction of TCM text still faces some challenges involving the lack of gold standard corpora, nonstandardized expressions, and multiple types of relations. In the future, IE work should be promoted by extracting more existing entities and relations, constructing gold standard data sets, and exploring IE methods based on a small amount of labeled data. Furthermore, fine-grained and interpretable IE technologies are necessary for further exploration. |
format | Online Article Text |
id | pubmed-9122692 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-91226922022-05-21 Information Extraction from the Text Data on Traditional Chinese Medicine: A Review on Tasks, Challenges, and Methods from 2010 to 2021 Zhang, Tingting Huang, Zonghai Wang, Yaqiang Wen, Chuanbiao Peng, Yangzhi Ye, Ying Evid Based Complement Alternat Med Review Article BACKGROUND: The practice of traditional Chinese medicine (TCM) began several thousand years ago, and the knowledge of practitioners is recorded in paper and electronic versions of case notes, manuscripts, and books in multiple languages. Developing a method of information extraction (IE) from these sources to generate a cohesive data set would be a great contribution to the medical field. The goal of this study was to perform a systematic review of the status of IE from TCM sources over the last 10 years. METHODS: We conducted a search of four literature databases for articles published from 2010 to 2021 that focused on the use of natural language processing (NLP) methods to extract information from unstructured TCM text data. Two reviewers and one adjudicator contributed to article search, article selection, data extraction, and synthesis processes. RESULTS: We retrieved 1234 records, 49 of which met our inclusion criteria. We used the articles to (i) assess the key tasks of IE in the TCM domain, (ii) summarize the challenges to extracting information from TCM text data, and (iii) identify effective frameworks, models, and key findings of TCM IE through classification. CONCLUSIONS: Our analysis showed that IE from TCM text data has improved over the past decade. However, the extraction of TCM text still faces some challenges involving the lack of gold standard corpora, nonstandardized expressions, and multiple types of relations. In the future, IE work should be promoted by extracting more existing entities and relations, constructing gold standard data sets, and exploring IE methods based on a small amount of labeled data. Furthermore, fine-grained and interpretable IE technologies are necessary for further exploration. Hindawi 2022-05-13 /pmc/articles/PMC9122692/ /pubmed/35600940 http://dx.doi.org/10.1155/2022/1679589 Text en Copyright © 2022 Tingting Zhang et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Zhang, Tingting Huang, Zonghai Wang, Yaqiang Wen, Chuanbiao Peng, Yangzhi Ye, Ying Information Extraction from the Text Data on Traditional Chinese Medicine: A Review on Tasks, Challenges, and Methods from 2010 to 2021 |
title | Information Extraction from the Text Data on Traditional Chinese Medicine: A Review on Tasks, Challenges, and Methods from 2010 to 2021 |
title_full | Information Extraction from the Text Data on Traditional Chinese Medicine: A Review on Tasks, Challenges, and Methods from 2010 to 2021 |
title_fullStr | Information Extraction from the Text Data on Traditional Chinese Medicine: A Review on Tasks, Challenges, and Methods from 2010 to 2021 |
title_full_unstemmed | Information Extraction from the Text Data on Traditional Chinese Medicine: A Review on Tasks, Challenges, and Methods from 2010 to 2021 |
title_short | Information Extraction from the Text Data on Traditional Chinese Medicine: A Review on Tasks, Challenges, and Methods from 2010 to 2021 |
title_sort | information extraction from the text data on traditional chinese medicine: a review on tasks, challenges, and methods from 2010 to 2021 |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9122692/ https://www.ncbi.nlm.nih.gov/pubmed/35600940 http://dx.doi.org/10.1155/2022/1679589 |
work_keys_str_mv | AT zhangtingting informationextractionfromthetextdataontraditionalchinesemedicineareviewontaskschallengesandmethodsfrom2010to2021 AT huangzonghai informationextractionfromthetextdataontraditionalchinesemedicineareviewontaskschallengesandmethodsfrom2010to2021 AT wangyaqiang informationextractionfromthetextdataontraditionalchinesemedicineareviewontaskschallengesandmethodsfrom2010to2021 AT wenchuanbiao informationextractionfromthetextdataontraditionalchinesemedicineareviewontaskschallengesandmethodsfrom2010to2021 AT pengyangzhi informationextractionfromthetextdataontraditionalchinesemedicineareviewontaskschallengesandmethodsfrom2010to2021 AT yeying informationextractionfromthetextdataontraditionalchinesemedicineareviewontaskschallengesandmethodsfrom2010to2021 |