Cargando…
Combining radiomics and deep convolutional neural network features from preoperative MRI for predicting clinically relevant genetic biomarkers in glioblastoma
BACKGROUND: Glioblastoma is the most common primary brain malignancy, yet treatment options are limited, and prognosis remains guarded. Individualized tumor genetic assessment has become important for accurate prognosis and for guiding emerging targeted therapies. However, challenges remain for wide...
Autores principales: | Calabrese, Evan, Rudie, Jeffrey D, Rauschecker, Andreas M, Villanueva-Meyer, Javier E, Clarke, Jennifer L, Solomon, David A, Cha, Soonmee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9122791/ https://www.ncbi.nlm.nih.gov/pubmed/35611269 http://dx.doi.org/10.1093/noajnl/vdac060 |
Ejemplares similares
-
A fully automated artificial intelligence method for non-invasive, imaging-based identification of genetic alterations in glioblastomas
por: Calabrese, Evan, et al.
Publicado: (2020) -
Biologically aggressive regions within glioblastoma identified by spin-lock contrast T1 relaxation in the rotating frame (T1ρ) MRI
por: Barajas, Ramon Francisco, et al.
Publicado: (2017) -
4252 Automated Fetal Brain Volumetry on Clinical Fetal MRI Using Convolutional Neural Network
por: Tran, Carol, et al.
Publicado: (2020) -
Multi-Disease Segmentation of Gliomas and White Matter Hyperintensities in the BraTS Data Using a 3D Convolutional Neural Network
por: Rudie, Jeffrey D., et al.
Publicado: (2019) -
MRI radiomics and potential applications to glioblastoma
por: Hooper, Grayson W., et al.
Publicado: (2023)