Cargando…
Rumor detection on social media using hierarchically aggregated feature via graph neural networks
In the era of the Internet and big data, online social media platforms have been developing rapidly, which accelerate rumors circulation. Rumor detection on social media is a worldwide challenging task due to rumor’s feature of high speed, fragmental information and extensive range. Most existing ap...
Autores principales: | Xu, Shouzhi, Liu, Xiaodi, Ma, Kai, Dong, Fangmin, Riskhan, Basheer, Xiang, Shunzhi, Bing, Changsong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9122810/ https://www.ncbi.nlm.nih.gov/pubmed/35615261 http://dx.doi.org/10.1007/s10489-022-03592-3 |
Ejemplares similares
-
HAT4RD: Hierarchical Adversarial Training for Rumor Detection in Social Media
por: Ni, Shiwen, et al.
Publicado: (2022) -
Dynamic graph convolutional networks with attention mechanism for rumor detection on social media
por: Choi, Jiho, et al.
Publicado: (2021) -
KAGN:knowledge-powered attention and graph convolutional networks for social media rumor detection
por: Cui, Wei, et al.
Publicado: (2023) -
DGTR: Dynamic graph transformer for rumor detection
por: Wei, Siqi, et al.
Publicado: (2023) -
Rumor detection based on propagation graph neural network with attention mechanism
por: Wu, Zhiyuan, et al.
Publicado: (2020)