Cargando…
Essential Regression: A generalizable framework for inferring causal latent factors from multi-omic datasets
High-dimensional cellular and molecular profiling of biological samples highlights the need for analytical approaches that can integrate multi-omic datasets to generate prioritized causal inferences. Current methods are limited by high dimensionality of the combined datasets, the differences in thei...
Autores principales: | Bing, Xin, Lovelace, Tyler, Bunea, Florentina, Wegkamp, Marten, Kasturi, Sudhir Pai, Singh, Harinder, Benos, Panayiotis V., Das, Jishnu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9122954/ https://www.ncbi.nlm.nih.gov/pubmed/35607614 http://dx.doi.org/10.1016/j.patter.2022.100473 |
Ejemplares similares
-
ENCAPP: elastic-net-based prognosis prediction and biomarker discovery for human cancers
por: Das, Jishnu, et al.
Publicado: (2015) -
Latent Model-Based Clustering for Biological Discovery
por: Bing, Xin, et al.
Publicado: (2019) -
Protecting the lungs but hurting the kidneys: causal inference study for the risk of ventilation-induced kidney injury in ARDS
por: Yang, Haopu, et al.
Publicado: (2020) -
Comparison of strategies for scalable causal discovery of latent variable models from mixed data
por: Raghu, Vineet K., et al.
Publicado: (2018) -
CausalMGM: an interactive web-based causal discovery tool
por: Ge, Xiaoyu, et al.
Publicado: (2020)