Cargando…
Scalable deeper graph neural networks for high-performance materials property prediction
Machine-learning-based materials property prediction models have emerged as a promising approach for new materials discovery, among which the graph neural networks (GNNs) have shown the best performance due to their capability to learn high-level features from crystal structures. However, existing G...
Autores principales: | Omee, Sadman Sadeed, Louis, Steph-Yves, Fu, Nihang, Wei, Lai, Dey, Sourin, Dong, Rongzhi, Li, Qinyang, Hu, Jianjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9122959/ https://www.ncbi.nlm.nih.gov/pubmed/35607621 http://dx.doi.org/10.1016/j.patter.2022.100491 |
Ejemplares similares
-
Predicting Lattice
Vibrational Frequencies Using Deep
Graph Neural Networks
por: Nguyen, Nghia, et al.
Publicado: (2022) -
Deeper Exploiting Graph Structure Information by Discrete Ricci Curvature in a Graph Transformer
por: Lai, Xin, et al.
Publicado: (2023) -
Composition Based Oxidation State Prediction of Materials Using Deep Learning Language Models
por: Fu, Nihang, et al.
Publicado: (2023) -
Probabilistic generative transformer language models for generative design of molecules
por: Wei, Lai, et al.
Publicado: (2023) -
Compressed graph representation for scalable molecular graph generation
por: Kwon, Youngchun, et al.
Publicado: (2020)