Cargando…
Stabilizing deep tomographic reconstruction: Part A. Hybrid framework and experimental results
A recent PNAS paper reveals that several popular deep reconstruction networks are unstable. Specifically, three kinds of instabilities were reported: (1) strong image artefacts from tiny perturbations, (2) small features missed in a deeply reconstructed image, and (3) decreased imaging performance w...
Autores principales: | Wu, Weiwen, Hu, Dianlin, Cong, Wenxiang, Shan, Hongming, Wang, Shaoyu, Niu, Chuang, Yan, Pingkun, Yu, Hengyong, Vardhanabhuti, Varut, Wang, Ge |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9122961/ https://www.ncbi.nlm.nih.gov/pubmed/35607623 http://dx.doi.org/10.1016/j.patter.2022.100474 |
Ejemplares similares
-
Stabilizing deep tomographic reconstruction: Part B. Convergence analysis and adversarial attacks
por: Wu, Weiwen, et al.
Publicado: (2022) -
Image-spectral decomposition extended-learning assisted by sparsity for multi-energy computed tomography reconstruction
por: Wang, Shaoyu, et al.
Publicado: (2022) -
Synergistic tomographic image reconstruction: part 2
por: Tsoumpas, Charalampos, et al.
Publicado: (2021) -
Synergistic tomographic image reconstruction: part 1
por: Tsoumpas, Charalampos, et al.
Publicado: (2021) -
Preliminary landscape analysis of deep tomographic imaging patents
por: Yang, Qingsong, et al.
Publicado: (2023)