Cargando…

A fine-grained network for human identification using panoramic dental images

When accidents occur, panoramic dental images play a significant role in identifying unknown bodies. In recent years, deep neural networks have been applied to address this task. However, while tooth contours are significant in classical methods, few studies using deep learning methods devise an arc...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Hu, Sun, Che, Liao, Peixi, Lai, Yancun, Fan, Fei, Lin, Yi, Deng, Zhenhua, Zhang, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9122963/
https://www.ncbi.nlm.nih.gov/pubmed/35607622
http://dx.doi.org/10.1016/j.patter.2022.100485
Descripción
Sumario:When accidents occur, panoramic dental images play a significant role in identifying unknown bodies. In recent years, deep neural networks have been applied to address this task. However, while tooth contours are significant in classical methods, few studies using deep learning methods devise an architecture specifically to introduce tooth contours into their models. Since fine-grained image identification aims to distinguish subordinate categories by specific parts, we devise a fine-grained human identification model that leverages the distribution of tooth masks to distinguish different individuals with local and subtle differences in their teeth. First, a bilateral branched architecture is designed, of which one branch was designed as the image feature extractor, while the other was the mask feature extractor. In this step, the mask feature interacts with the extracted image feature to perform elementwise reweighting. Additionally, an improved attention mechanism was used to make our model concentrate more on informative positions. Furthermore, we improved the ArcFace loss by adding a learnable parameter to increase the loss of those hard samples, thereby exploiting the potential of our loss function. Our model was tested on a large dataset consisting of 23,715 panoramic X-ray dental images with tooth masks from 10,113 patients, achieving an average rank-1 accuracy of 88.62% and rank-10 accuracy of 96.16%.