Cargando…
Privacy-preserving federated neural network learning for disease-associated cell classification
Training accurate and robust machine learning models requires a large amount of data that is usually scattered across data silos. Sharing or centralizing the data of different healthcare institutions is, however, unfeasible or prohibitively difficult due to privacy regulations. In this work, we addr...
Autores principales: | Sav, Sinem, Bossuat, Jean-Philippe, Troncoso-Pastoriza, Juan R., Claassen, Manfred, Hubaux, Jean-Pierre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9122966/ https://www.ncbi.nlm.nih.gov/pubmed/35607628 http://dx.doi.org/10.1016/j.patter.2022.100487 |
Ejemplares similares
-
Truly privacy-preserving federated analytics for precision medicine with multiparty homomorphic encryption
por: Froelicher, David, et al.
Publicado: (2021) -
Author Correction: Truly privacy-preserving federated analytics for precision medicine with multiparty homomorphic encryption
por: Froelicher, David, et al.
Publicado: (2021) -
Revolutionizing Medical Data Sharing Using Advanced Privacy-Enhancing Technologies: Technical, Legal, and Ethical Synthesis
por: Scheibner, James, et al.
Publicado: (2021) -
A federated graph neural network framework for privacy-preserving personalization
por: Wu, Chuhan, et al.
Publicado: (2022) -
Privacy-preserving semi-parallel logistic regression training with fully homomorphic encryption
por: Carpov, Sergiu, et al.
Publicado: (2020)