Cargando…
Stabilizing deep tomographic reconstruction: Part B. Convergence analysis and adversarial attacks
Due to lack of the kernel awareness, some popular deep image reconstruction networks are unstable. To address this problem, here we introduce the bounded relative error norm (BREN) property, which is a special case of the Lipschitz continuity. Then, we perform a convergence study consisting of two p...
Autores principales: | Wu, Weiwen, Hu, Dianlin, Cong, Wenxiang, Shan, Hongming, Wang, Shaoyu, Niu, Chuang, Yan, Pingkun, Yu, Hengyong, Vardhanabhuti, Varut, Wang, Ge |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9122974/ https://www.ncbi.nlm.nih.gov/pubmed/35607615 http://dx.doi.org/10.1016/j.patter.2022.100475 |
Ejemplares similares
-
Stabilizing deep tomographic reconstruction: Part A. Hybrid framework and experimental results
por: Wu, Weiwen, et al.
Publicado: (2022) -
Image-spectral decomposition extended-learning assisted by sparsity for multi-energy computed tomography reconstruction
por: Wang, Shaoyu, et al.
Publicado: (2022) -
Tomographic reconstruction with a generative adversarial network
por: Yang, Xiaogang, et al.
Publicado: (2020) -
Adversarial attacks and adversarial robustness in computational pathology
por: Ghaffari Laleh, Narmin, et al.
Publicado: (2022) -
Improving the adversarial transferability with relational graphs ensemble adversarial attack
por: Pi, Jiatian, et al.
Publicado: (2023)