Cargando…
Machine learning phenomics (MLP) combining deep learning with time-lapse-microscopy for monitoring colorectal adenocarcinoma cells gene expression and drug-response
High-throughput phenotyping is becoming increasingly available thanks to analytical and bioinformatics approaches that enable the use of very high-dimensional data and to the availability of dynamic models that link phenomena across levels: from genes to cells, from cells to organs, and through the...
Autores principales: | D’Orazio, M., Murdocca, M., Mencattini, A., Casti, P., Filippi, J., Antonelli, G., Di Giuseppe, D., Comes, M. C., Di Natale, C., Sangiuolo, F., Martinelli, E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9123013/ https://www.ncbi.nlm.nih.gov/pubmed/35595808 http://dx.doi.org/10.1038/s41598-022-12364-5 |
Ejemplares similares
-
NeuriTES. Monitoring neurite changes through transfer entropy and semantic segmentation in bright-field time-lapse microscopy
por: Mencattini, Arianna, et al.
Publicado: (2021) -
The influence of spatial and temporal resolutions on the analysis of cell-cell interaction: a systematic study for time-lapse microscopy applications
por: Comes, M. C., et al.
Publicado: (2019) -
Deep-Manager: a versatile tool for optimal feature selection in live-cell imaging analysis
por: Mencattini, A., et al.
Publicado: (2023) -
Deciphering Cancer Cell Behavior From Motility and Shape Features: Peer Prediction and Dynamic Selection to Support Cancer Diagnosis and Therapy
por: D'Orazio, Michele, et al.
Publicado: (2020) -
A Camera Sensors-Based System to Study Drug Effects on In Vitro Motility: The Case of PC-3 Prostate Cancer Cells
por: Comes, Maria Colomba, et al.
Publicado: (2020)